र्टील अथॉरिटी ऑफ इण्डिया लिमिटेड

STEEL AUTHORITY OF INDIA LIMITED

रॉ मेटेरियल्स डिवीजन

RAW MATERIALS DIVISION

वरसुआ लोह खदान

BARSUA IRON MINES

P.O. TENSA - 770042

Phone- 06625-236026 Fax - 236031

Ref. No. BIM / E&L / 319

(A)

Date: 26.04.2018

To,
The Additional Director (S)
El Division, Ministry of Environment & Forests,
ParyavaranBhawan, CGO complex, Lodi Road,
New Delhi – 110003

Sub: Six monthly status of compliance of conditions stipulated in Environmental Clearance (grant order of MoEF No. J-11015/351/2006-IA.II(M), dated 29th October 2010) for the period ending 31st March 2018.

Sir,

Please find enclosed herewith the updated six monthly compliance report with respect to the conditions stipulated by MoEF &CC, Govt. of India, New Delhi while granting Environmental Clearance to integrated Barsua-Taldih- Kalta Iron Ore Mines (ML-130) of M/s. Steel Authority of India Limited for production of 8.05 mtpa vide MoEF letter No. J-11015/351/2006-IA.II(M), dated 29th October 2010 for the period ending 31st March 2018.The report also contains the updated status of environmental monitoring.

Thanking you,

Yours faithfully.

General Manager Barsua Iron Mine

Encl: As Above

Copy:

- The Additional Director (S), MoEF&CC, Govt. of India, Eastern Regional Office, A/3 Chandrasekharpur, Bhubaneswar-751023 (Odisha)
- The Member Secretary, Central Pollution Control Board, Paribesh Bhawan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi-110032
- The Member Secretary, State Pollution Control Board, Paribesh Bhawan, A/118 Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012 (Odisha)

ole you

Status of Compliance (Barsua Part) to Conditions Stipulated in Environmental Clearance (vide order no. J-11015/351/2006-IA.II(M), dt. 29.10.2010) of

Integrated Barsua – Taldih – Kalta Iron Ore Mining Project (ML – 130), Village Tantra, District Sundergarh, Odisha, Raw Materials Division, SAIL

(Period: October 2017 to March 2018)

A. Specific Conditions

Sl. No	Condition	Compliance Status
(i)	The Project proponent shall obtain consent to Establish and Consent to Operate from the State Pollution Control Board, Orissa and effectively implement all the conditions stipulated therein.	Consent to Establish was obtained from SPCB, Odisha for a capacity of 8.05 MTPA for Integrated Barsua – Taldih- Kalta Mining Project (ML-130) Vide No. 609/IND-II-NOC-5182, dated 13.01.2012. Also, Consent to Establish has been amended on dt.5.11.2016 which is valid for five years. CTO has also been obtained from SPCB, Odisha Vide No. 4479/IND-I-CON-1(A), dated 23.03.2017 for a quantity of 8.05 MTPA with validity up to 31.03.2019. Necessary actions are being taken to effectively implement the conditions stipulated therein.
(ii)	The environmental clearance is subject to grant of approval of the State Land use Department, Government of Orissa for diversion of agricultural land for non agricultural use.	No agriculture land involved in the project for the purpose of mining and allied activities. Hence, question of diversion of agricultural land for non-agricultural purpose doesn't arise.
(iii)	Necessary Forestry Clearance (FC) under the FC Act, 1980 for an area of 2347.641 ha is forest land involved in the project shall be obtained. Environmental Clearance is subject to grant of FC.	Final Forestry Clearance (Stage-II) for mining and allied activities & safety zone for 2nd RML period has been granted by MoEF, Govt. of India vide letter No.F.No.8-90/1996-FC(pt.), dtd. 06.03.2013.
(iv)	Environmental Clearance is subject to final order of the Hon'ble Supreme court of India in the matter of Goa Foundation Vs. Union of India in Petition (Civil) No.460 of 2004, as may be applicable to this project.	Noted for compliance.
(v)	Environmental Clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 from the competent authority, as may be applicable to this project.	No notified National Park / Wildlife Sanctuary / Biosphere Reserve / Tiger Reserve are located within 10 kms from the Mining Lease boundary. Hence it is not applicable to this mining project However, a Site Specific Wildlife Conservation Plan(SSCP) has been prepared, approved by Conservator of Forests (WL).
vi)	The project proponent shall ensure that no natural watercourse and drainage channels except first order channels Id1, Id2, Id3, Id4, Id5, Id6,	Due precautions are being taken and ensured that no natural watercourse / drainage channels obstructed due to any mining operation at the mines. So far only Id1, Id2 & Id8 have been diverted and

Sl. No	Condition	Compliance Status
	Id7 and Id8 passing through the	finally meet their final natural course.
	mine lease shall be diverted. The	
	channels shall be so diverted that it finally meets its final natural course.	
(vii)	The top soil shall temporarily be	
()	stored at earmarked site(s) only and	Though the generation of top soil is very less, it is being
	it should not be kept unutilized for	stacked separately and used rehabilitation of dumps and other areas through plantation. During the year, around
	long. The topsoil shall be used for	350 cbm of top soil have been utilized for nursery
	land reclamation and plantation.	and plantation activities out of around 700 cbm
		generated from Taldih block.
(viii)	The OB generated shall be stacked	The over burden (OB) / sub-grade ore generated during
(VIII)	at earmarked dump site(s) only and	the mining operations is being stored at earmarked sites
	it should not be kept active for a	as per the approved Scheme of Mining. Phase wise
	long period of time and its phase-	stabilization with installation of coir mats and
	wise stabilization shall be carried	broadcasting of grass seeds are carried out as per
	out. The project proponent shall	approved schemes. During the period, installation of
	carry out slope stability study through an expert organization like	geo-green coir mats over an area of 10000 sqm. area of Dump-8 at Barsua Iron Mine have been completed to
	CIMFR, Dhanbad for attaining the	control surface run-off and erosion. For effective
	proposed height of dump of 60m in	stabilization, terracing of the OB dumps with overall
	three lifts and submit report to the	slope of the dump is being maintained to below 27 ⁰ .
	ministry and its Regional Office	Further, proposal for slope stability study is under
	within three months. Proper	process.
	terracing of the OB dumps shall be	Regular Compliance Status Report on six monthly basis
	carried out so that the overall slope of the dump shall be maintained to	is submitted to MoEF&CC and its Regional Office.
	27°. Compliance status shall be	
	submitted to the MoEF and its	
	Regional Office located at	
	Bhubaneswar on six monthly basis.	
(ix)	Catch drains and siltation ponds of	4Nos. of dry-boulder check dams with wire mess of 21.5
	appropriate size shall be constructed	m x 2.0 m x 1.5/2.5 m, 26.6 m x 1.9 m x 1.5/2.5 m, 21.6 m x 2.0 m x 2.5/5.0 m and 28.15 m x 1.75 m x 1.5/2.5 m.
	around the mine working, mineral and OB dumps to prevent run off of	have been completed during the period at a cost of 7.83
	water and flow of sediments directly	lakh at Taldih block approaching to Tantara and Phuljhar
	into the agricultural fields, the first	village for management of surface run-off which will also
	order channels, the Samaj Nallah,	minimize soil erosion and choking of streams have been
	the Kuradihi Nallah, and other water	completed.
	bodies. Garland drains, setting tanks	
	and check dams of appropriate size, gradient and length shall be	
	gradient and length shall be constructed around the mine pit,	
	dumps to prevent run off of water	
	and flow of sediments.	
(x)	Dimension of the retaining wall at the	Toe walls, garland drains and siltation ponds at the OB
	toe of the over burden dumps and the	Dumps have been constructed to control the surface runoff
	OB benches within the mine to check	from the OB dumps. Based on the rainfall of the region,
	run-off and siltation shall be based on the rain fall data.	1.5 to 2.0m. width and 1.5m to 2.0m. height toe walls and
	पाट १वाम १वाम प्रवास.	1.0m. width and 1.50m. depth garland drains were

Sl. No	Condition	Compliance Status			
		provided.			
(xi)	The water recovery and spill way system shall be so designed that the natural water resources are not affected and that no spill water goes into the nearby Karo River and other water bodies.	The tailing dam top is at 420.5m. AMSL. Maximum settled slime level is at 416.5m. AMSL and the spill way is at 418.0m. AMSL. The overflow clean water after siltation of slimes in the pond is channelized to the natural stream. The quality of overflow water is monitored regularly and found within the norm. However, system for recovery and recycling of clean water from the tailing pond has been provided at Barsua Iron Mine under Zero Discharge Project.			
(xii)	The project proponent shall carry out conditioning of the ore with water to mitigate fugitive dust emission, without affecting flow of ore in the ore processing and handling areas.	Dry Fog System (DFS) and wet screening arrangements have been provided in the Ore Handling Plant to mitigate fugitive dust emission, without affecting flow of ore in the ore processing and handling areas.			
(xiii)	The effluent from the ore beneficiation plant shall be treated to conform to the prescribed standards and the tailings slurry shall be transported through a closed pipeline to the tailing dam.	Effluent generated from the ore beneficiation plant is being treated in Thickeners followed by Tailing Ponds. The clear water to the tune of 40 % is being recycled and the underflow from thickener is discharged into Tailing Dam. As the tailings dam is hiving adequate capacity and the Barsua Mine is not being operated since May 2015, presently there is no overflow from the tailings pond except seepage from the dam body. The quality of the dam seepage water is being monitored and found to be in compliance with the discharge quality standards.			
(xiv)	The project proponent shall take necessary safeguard measures to ensure that there is no leaching from the pond.	The Tailing Pond at Barsua Iron Mine is located on the hard & plain area and is in operation since 1969. As iron ore in the region does not containing any heavy metals and no chemicals are being used in the beneficiation of ore at the mine, leaching of metals from the pond is not expected. The quality of the ground water at downstream of tailing pond is measured regularly.			
(xv)	The decanted water from the tailing pond shall be re-circulated and there should be zero discharge from the tailing pond.	System for recovery and recycling of decanted water from the tailing pond has been provided at Barsua Iron Mine under Zero Discharge Project.			
(xvi)	Effective safeguard measures such as regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of particulate matter such as crusher zone, loading and unloading point and all transfer points during handling of the ore. Extensive water sprinkling shall be carried out on roads. It should be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the CPCB.	Regular water sprinkling through pressurized sprinkler of 28KL capacity (2 Nos.) at Barsua Iron Mine and with a 12 KL capacity at Kalta Iron Mine are being carried out effectively in all areas. Dry Fog System (DFS) and wet screening arrangements have been provided in the Ore Handling Plant to mitigate fugitive dust emission. Also, around 2.0 km length of permanent haul road and 1.20 km length of road near loading area has been covered with static water sprinkling system. All these dust control measures installed at the mines have significantly controlled fugitive dust emission.			

Sl. No	Condition	Compliance Status
(xvii)	Plantation shall be raised in an area of 1658.803ha including a 7.5m wide green belt in the safety zone around the mining lease, OB dumps, around beneficiation plant, mine benches around tailing ponds, roads etc. by planting the native species in consultation with the local DFO. The density of the trees should be around 2500 plants per Ha. Green belt shall be developed all along the mine lease area in a phased manner and shall be completed within first five years.	Phase wise plantation by planting native species is carried out within or outside of the lease area and density is assessed as per the crown density of the area. During the period, total 18250 saplings have been planted over an area of 8.80 Ha. at Barsua and Kalta block. Also, a scheme for Safety Zone plantation was prepared and phase wise plantation within safety zone of ML-130 is done by State Forest Department.
(xviii)	The project authority should implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central ground water Board.	A technical feasibility study for hydro-geological, rain water harvesting and augmentation of ground water has been conducted and implementation of the measures as per recommendation is in process. The following measures have also been adopted to for conservation of ground water and augmentation The surface run-off generated from the mine is channelized through garland drain and discharged to an abandoned pit for further ground water recharge. Series of check dams at different strategic locations along the streams are being constructed for conservation of ground water.
(xix)	Regular monitoring of ground water level and quality shall be carried out in and around the project area by establishing a network of existing wells and installation new piezometers during the operation. the periodic monitoring [at least four times in a year-pre monsoon (April-May) monsoon (August), postmonsoon (November) and winter (January); once in each season)] shall be carried out in consultation with the State GWB/Central GWB and the data thus collected may be sent regularly to the MoEF and its regional office at Bhubaneswar and the Regional Director, CGWB.	There are 3Nos.of abandoned open wells all around the mines which are not in use viz, (i) Barsua Valley (ii) Zero point, Tensa (iii) Kalta Basti, Kalta for regular monitoring of ground water levels. During the period, 3 Nos. of Piezometers have already been installed at 3 locations to monitor ground water level.
(xx)	The groundwater and surface water in and around the mine including tailing ponds shall be regularly monitored at strategic locations for heavy metals. The monitoring stations shall be established in consultation with the Regional Director, CGWB and SPCB.	Regular monitoring for heavy metals of ground water in and around the mine is being carried out. Water quality for the period from October 2017 to March 2018 is placed in <i>Annexure</i> .

	Condition	Compliance Status			
Sl. No	Condition	Compliance Status			
(xxi)	Appropriate mitigative measures shall be taken to prevent pollution of the Karo River in consultation with the State Pollution control Board.	Kharagpur to assess the impacts of mining on water			
(xxii)	Regular monitoring of the flow rate of the spring and perennial nallahs flowing in and around the project area shall be carried out and records maintained.	Regular monitoring of the flow rate of the spring and perennial nallahs i.e. Kuradih & Samaj at Barsua part and Najkura at Kalta part is being carried out and records are being maintained.			
(xxiii)	The project proponent shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water) required for the project.	Permission of water withdrawal has been obtained from State Irrigation Department for existing requirement i.e. 2,18,000 cbm. water per month exists.			
(xxiv)	Suitable rainwater harvesting measures on long term basis shall be planned and implemented in consultation with the Regional Director, CGWB.	A Technical Feasibility Study for hydro-geological, rain water harvesting & augmentation of ground water resources has been conducted and as per recommendation, a proposal is in process to take suitable measures for rain water harvesting as well as augmentation of ground water.			
(xxv)	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operation and in transportation of mineral. The vehicles carrying the mineral shall be covered with a tarpaulin and shall not be overloaded.	Scheduled / Preventive maintenance of HEMM and light vehicles are undertaken regularly to keep the vehicular emissions under control. Light Vehicles are having pollution control certificate. Ore transportation from ore crushing and screening plant of Taldih block to SAIL railway siding area located at Barsua Valley by vehicles covered with tarpaulin.			
(xxvi)	Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements.	Mineral handing plant have been provided with the dust control measures like 'Dry Fog System' (DFS) at hopper and other transfer units, covering of conveyors belt etc.			
(xxvii)	Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure of dust and take corrective measures, if needed. Health records of the workers shall be maintained.	Occupational health surveillance programs of the workers are being undertaken periodically to observe any contractions due to exposure of dust. Health records of the workers are maintained.			
(xxviii)	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and record	Pre-placement medical examination and periodical medical examination of the workers engaged in the project are carried out and record maintained. Schedule of health examination of the workers is also drawn and followed			

	States of Ee	~
Sl. No	Condition	Compliance Status
	maintained. For the purpose, schedule	accordingly.
	of health examination of the workers	
	should be drawn and followed	
	accordingly.	
(xxix)	Sewage treatment plant shall be	Individual septic tank with soak pits has been provided in
	installed for the colony. ETP shall	the colony. Moreover, a study has been carried out by
	also be provided for the workshop and	M/s. WATENVA SOLUTION PVT LTD, Bhubaneswar for
	the wastewater generated during	stabilization of STP at colony.
	mining operation.	ETP has been provided for treatment of effluents from
		the ore beneficiation plant consisting of Thickeners
		followed by Tailing Pond. About 60% of clear water
		from the Thickener as overflow and recycled back to
		the system. The underflow from the Thickener is being
		drained to the Tailing Pond for further settling of solids.
(xxx)	The R&R of the project affected	Not Applicable.
(11111)	people, if any shall be carried out as	1,001,200,000
	per the NPRR.	
(xxxi)	Digital processing of the entire lease	Digital processing of the entire lease area has been
	area using remote sensing technique	studied through satellite Imagery for the period of
	should be done regularly once in three	December 2013.
	years for monitoring land use pattern	Procurement of satellite imageries for the period of 2016
	and report submitted to MOEF and its	is under process. The study report in this regard will be
	Regional office located at	submitted soon
	Bhubaneswar.	Submitted Soon
(xxxii)	Provision shall be made for the	SAIL has a well developed township at Tensa and Kalta
	housing of construction labour within	with residential accommodation for its workers with all
	the site with all necessary	necessary infrastructure and construction such as LPG gas
	infrastructure and construction such as	connection, electricity for cooking, welfare amenities like
	fuel for cooking, mobile toilets,	toilets, safe drinking water and medical facilities etc.
	mobile STP, safe drinking water,	Whenever required, the construction labour are hired
	medical health care, creche etc. The	from the local villagers and only few are being hired from
	housing may be in the form of	outside, for which housing facilities along with necessary
	temporary structures to be removed	infrastructure are being provided at the existing colony of
	after the completion of the project.	the mines.
(xxxiii)	The project proponent shall take all	All precautions are undertaken for not to disturb the flora
	precautionary measures during mining	and fauna inside the lease area. All necessary facilities are
	operation for conservation and	being extended to the local Forest Department for
	protection of endangered fauna	implementation of the wildlife conservation activities
	namely elephant, sloth bear, peacock	regularly.
	etc. spotted in the study area. All the	An amount of Rs.10,69,14,469.00 towards
	safeguard measures brought out in the	implementation of comprehensive wild life management
	Wildlife Conservation Plan so	plan prepared for Bonai-Keonjhar forest division.
	prepared specific to this project site	Activities as per the Site Specific Conservation Plan are
	shall be effectively implemented.	implemented.
,		
(xxxiv)	The critical parameters such as RSPM	Critical parameters i.e. PM10, PM2.5, NOx and SO2 in
	(Particulate matter with size less than	ambient air and relevant parameters in the effluents are
	10micron i.e., PM10) SO ₂ and NOx in	being monitored regularly. Installation of 3 Nos. of
	the ambient air within the impact	Continuous Ambient Air Quality Monitoring Stations
		<u> </u>

Sl. No	Condition	Compliance Status
	zone, peak particle velocity at 300m distance or written the nearest habitation whichever is closer shall be monitored periodically. Further, quality of discharged water shall also be monitored for TDS, DO, PH and TSS. The monitored data shall be uploaded on the website of the company as well as displayed on a display board at the project site at a suitable location near the main gate of the company in public domain.	(CAAQMS) at Barsua-Kalta have been completed and data are being transmitted to SPCB server. The monitored data is being displayed at the main gate of the mines. Copy of EC compliance along with environmental quality data is being uploaded to the company website www.sail.co.in.
(xxxv)	A Final Mine Closure Plan along with details of Corpus Fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	A Final Mine Closure Plan along with details of corpus fund will be submitted to MoEF&CC, New Delhi 5 years in advance of final mine closure for approval.

B. General Conditions

Sl. No	Condition	Compliance Status					
(i)	No change in mining technology and scope of working should be made without prior approval of the MoEF & CC.	Mining is being done as per the approved Mining Plan/ Scheme of Mining and amended Environmental Clearance.					
(ii)	No change in the calendar plan including excavation, quantum of mineral iron ore and waste should be made.	There will be no change in the calendar plan including excavation, quantum of mineral iron ore and waste should be made. ROM production at various mining blocks under ML-130 is kept within permitted capacity in the EC / approved Mining Plan. The quantity of ROM Production during October to March is as follows:					
		Plan (in mtpa) Actual (in mtpa)					
		BIM: ROM 1.65 Nil					
		Sub-Grade 0.84 0.08					
		OB Nil 0.07					
		TIM: ROM 0.82 0.36					
		Sub-Grade Nil 0.03					
		KIM: ROM 1.17 0.46					
		Sub-Grade 0.32 0.04					
		OB Nil Nil					
(iii)	Four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RSPM (Particulate matter with size less than 10 micron i.e., PM10), SO2 and Nox	Barsua & Kalta Mines have been established based on					

Sl. No	No Condition Compliance Status					
	monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with SPCB.	parameters (PM2.5, PM10, SO2 and NOX) to mining industries as per the guidelines of MoEF&CC and CPCB is being done. Moreover, 3 Nos. of Continuous Ambient Air Quality Monitoring Stations (CAAQMS) at Barsua-Kalta have been commissioned and data are being transmitted to SPCB server.				
(iv)	Data on ambient air quality RSPM (Particulate matter with size less than 10 micron i.e., PM10), SO2 and Nox should be regularly submitted to the Ministry of environment and Forest including its Regional office located at Bhubaneswar and the SPCB / CPCB in six months.	Ambient air quality monitoring data (PM2.5, PM10, SO2 and NO2) is being submitted to MoEF&CC, New Delhi and Regional Office, Bhubaneshwar along with the compliance reports. Air Quality report for the period October 2017 to March 2018 is placed as <i>Annexure</i> . Air quality data is also being submitted to SPCB and Central Pollution Control Board.				
(v)	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.	Fugitive dust emission on haul road is controlled by regular water sprinkling by mobile water sprinklers. Fugitive emission at hopper is controlled by pressurized water mist spray.				
(vi)	Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.	Regular maintenances and periodic checks of the HEMM are being carried out to control noise below 85 dB(A) in the work environment. The operators engaged in blasting/ drilling operations and operator of HEMM are provided with ear plug/ ear muffs with helmet. Use of these protective measures is ensured by educating the workers on ill effect of the prolonged excessive exposure to high Noise levels and daily checks by shift				
(vii)	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluent.	mining engineers regarding usage of ear plug/ear muffs. Oil & grease traps have been provided for treating the effluents from garages. Effluents generated from the beneficiation plants are being treated in Thickeners followed by Tailing Ponds. The clear water to the tune of 60% is being recycled and the underflow from thickener is discharged into Tailing Dam.				
(viii)	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	Dust masks have been provided to personnel working in dusty areas and ensured by daily checks. Training on safety and health aspects is being imparted on regular basis. A full fledged Occupational Health Centre(OHC) is run by the mines for regular health surveillance. Periodical Medical Examination (PME) of all workmen working in the mines is being done at our OHC once in every five years/three/one year depending on category.				

Sl. No	Condition	Compliance Status
(ix)	A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.	A full fledged Environmental Management Cell (EMC) has been established to look after environmental aspects headed by an experienced engineer with more than 10 years experience in the field of environment in the rank of Dy. General Manager, who directly reports to Head of Mines. He is further assisted by two more experienced officers for environmental management at mines. Besides, an E&L department at our HQ i.e. RMD, Kolkata with qualified and experienced environmental engineer who facilitates all the RMD mines. In addition to the EMC at mines level, an Environment & Lease Department at our headquarters i.e. Raw Materials Division, Kolkata with qualified and experienced environmental engineers who facilitates all the RMD Mines including Barsua – Kalta Mines in design, implementation and maintenance of various pollution control measures.
(x)	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the MoEF&CC and its Regional Office located at Bhubaneswar.	Funds earmarked for environmental protection measures at the mines are booked separately and not being diverted for other purpose. During the year, expenditures in different heads for environmental protection measures in respect of Barsua, Taldih & Kalta Iron Mine are as follows: I) Plantation: 6.10 lakh II) Water spraying: 12.30 lakh III) Environmental monitoring: 13.00 lakh IV) Construction of check dams/ toe wall: 7.83 lakh V) Installation of 3 Nos. CAAQMS: 124.00 lakh VI) Stabilization of Dump-8: 12.45 lakh
(xi)	The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	The Barsua and Kalta Blocks under the ML-130 are operating since 1960 and 1966 respectively. Development work and installation of various facilities at Taldih Block are under progress & will be informed in due time after installation of the facilities.
(xii)	The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / monitoring reports.	Full co-operation is extended to the officer(s) of the regional office of MoEF&CC by furnishing the requisition data information, monitoring reports etc.
(xiii)	The project proponent shall submit six monthly reports on the status of compliance of the stipulated environmental clearance conditions including results of monitored data to the MoEF, its Regional Office Bhubaneswar, and the respective Zonal Office of CPCB.	Six monthly compliance reports on the status of implementation of environmental safeguards are being submitted to MoEF&CC, New Delhi, Regional Office, MoEF&CC, Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. Copy of the compliance report including environmental

Sl. No	Condition	Compliance Status
	The proponent shall upload the status of compliance of the EC conditions on their website and shall update the same periodically. It shall simultaneously be sent to the regional Office of the MoEF, Bhubaneswar, the respective Zonal Office of CPCB and SPCB.	quality data is being uploaded to the SAIL web site i.e. www.sail.co.on.
(xiv)	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parisad/ Municipal corporation, Urban local Body and the Local NGO, if any, from whom suggestions, representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Copy of clearance letter was notified in public places and community centers. A copy of the environmental clearance letter has already been sent to the Panchayat. The clearance letter has been put on the Company website i.e. www.sail.co.on.
(xv)	The State Pollution Control Board should display a copy of the clearance letter at the regional Office, District Industry Centre and the Collector's Office / Tehsildar's Office for 30 days.	-
(xvi)	The environmental statement for each financial year ending 31st March in Form-V as is maintained to be submitted by the project proponent to the concerned SPCB as prescribed under the EP Rules- 1986, as amended subsequently, shall also be put on the website of the company and shall also be sent to the Regional office of the MoEF, Bhubaneswar by e-mail.	Being complied with.
(xvii)	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter is available with the SPCB and also at web site of the MoEF at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of the Ministry located at Bhubaneswar.	Already advertised. Also, amended Environmental Clearance vide F.No.J-11015/351/2006-IA.II(M)(pt.), dt.30.03.2016 for integrated Barsua-Taldih-Kalta Iron ore Mines (ML-130) has been advertised.

DETAIL ANALYSIS OF AIR QUALITY MONITORING BARSUA/TALDIH IRON MINES

Annexure-1A

March 2018 February 2018 December 2017 October 2017

NO,	[08	14.4	9.7	14	10.4
			-			
SO ₂	-	80	4.6	4.0	10	4.1
PM _{2.5}		99	32.3	28.5	46	29.9
RSPM (PM ₁₀)		100	65.5	58.1	8/	61.2
NO _x		80	14.9	10.6	14	10.6
503		90	4.7	4.1	10	4.4
PM _{2.5}		9	32.8	30.2	46	30.2
RSPM (PM ₁₀)		100	99	62.1	78	62.1
NOx		80	14.9	10.2	14	10.5
502		80	5.0	4.1	10	4.1
PM _{2.5}		9	35.6	30.1	46	31.3
RSPM (PM ₁₀)		100	70.9	6.19	82	63.4
NO _x		80	14.7	9.9	12	10.3
So		80	4.9	< 4.1	so.	< 4.1
PM _{2.5}		9	34.8	19.7	34	31.5
RSPM (PM ₁₀)		100	6.99	60.4	29	63.8
oN .		98	13.9	9.9		11
202		80	4.8	t.4 >		4.3
PM _{2.5}		09	34.6	30.1	·	30.9
RSPM (PIM _{sol}	reas.	100	68.3	19	٠	63.1
PM _{2.5} 5O ₂ NO _x	& other a	08	< 10.3	< 9.3	1	< 9.7
502	tial, rura	80	< 4.3	< 4.0	,	< 4.1
PM _{2.5}	n Resider	09	25.3	20.8		22.7 < 4.1
RSPM (PM ₁₀)	- Quality	100	51.5	43.8		47.0
Location	A) Ambient Air Quality in Residential, rural & other greas.	Norm as per NAAQS	A1	A 2	A 3	A 4

Note : Ambient Air Quailty Manitoring was conducted as per MaEF Notification No. GSR 826(E), dtd.16.11.2009.

unit in µg/m³

Bi Results of Fusitive Emission / Work Zone Quality.

3			CONTRACTOR OF THE PROPERTY OF			-						ſ
	Oct-17	-17	No	Nov-17	Dec-17	-17	Jan-18	18	Feb-18	.18	Mar	Mar-18
	1,	1200	73	1200	1200	00	1200	8	1200	30	1200	00
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
	98.2	268.4	274.5	336.4	309.6	371.2						
165	89.4	256.4	268.2	354.2	346.2	392,4						
5	86.8	260.1	276.4	342.1	324.8	382.7			×			
DS - NO - P	78.9	253.7	224.8	290.1	307.2	372.1						
	80.7	242.8	256.1	328.5	318.5	386.4						
	242.2	468.4	474.5	593.4	599.7	724.5						
,,,	228.5	470,5	468.7	560.7	586.2	748.2	V 876	10000	000	i		
	291.7	482.7	469.4	609.5	624.5	757.2						
ŧ						1						0000

" unit in µg/m3

Note: Fusitive emission standards as per MOEF Natification No. GSR 809(E), dtd 4.10.2010 on Iron ore mining and processing. Particulate matter (PM)-1200 $\mu g/m^3$ at a distance of 25.22m. in the pre dominant downward direction from the source of generation.

BDL - Below Detectable Limit (6µg/m³l

Locations:

A 1 : Guest House, Tensa township A 2 : Barua valley, Township

A 3 : Administrative Building, BIM

A 4 : Tantara Village

A 5 : Drilling Site (BIM) A 6: Excavation & loading (BIM)

A 9 : Stock ple& Loading(B/V, BIM) A8 : Dump Area(BIM) A 7 : Haul Road(BIM)

A 10 : Haul Road (TIM)

A11 : Screening Area (TIM)

DETAIL ANALYSIS OF AMBIENT AIR QUALITY MONITORING

Annexure-IB

ļ		3rd Qtr.2	2017-18		13,000	4th Q	tr.2017-18	- 10 de
Location	RSPM (PM ₁₀)	PM _{2.5}	SO ₂	NO _x	RSPM (PM ₁₀)	PM _{2.5}	SO ₂	NO _x
1) Ambient Air	Quality in Re	sidential, rur	al & other are	205.			AC 800	****
Norm as per NAAQS	100	60	80	80	100	60	80	80
A1	62	32	9	12	7=	-	727	
A2	-	5	-	-	(=)	-	(=)	-
A7	68	45	12	14	62	45	12	16
A8	-	-	-	-	-	_	-	

* unit in µg/m³

Note : Ambient Air Quality Monitoring was conducted as per MoEF Notification No. GSR 826(E), dtd.16.11.2009.

B) Results of Fusitive Emission / Work Zone Quality.

	SPM	RSPM	SO ₂	NO _x	SPM	RSPM	SO ₂	NO _x
Norm as per IBM	700	350	5000	5000	700	350	5000	5000
A3	625	248	2	1000 1000 1000 1000 1000 1000 1000 100	-	_	-	-
A4	23 -	-	-				1-	
A5	385	142	-	-	524	285	3=	
A6	6 -	-		***		-	_	14.
A9	-	_	- 10,000	S-1	-	- 1		

* unit in µg/m³

Note: Fusitive emission standards as per MoEF Notification No. GSR 809(E), dtd.4.10.2010 on iron ore mining and processing. Particulate matter (PM)-1200 µg/m³ at a distance of 25±2m. In the pre dominant downward direction from the source of generation.

NB:

BDL - Below Detectable Limit (6µg/m³⁾

Locations:

A1: Kalta Township

A2 : Kalta Basti

A3:Drilling point

A4: Excavation & Loading the mine face

A5 : Haul Road/Service road

A6 : Mobile crushing & screening plant Area

A7 : Kalta Admn.Bldg.

A8: Roxy Railway Siding Hutting Area No.-3 (near UNION Office)

A9:Roxy Railway Siding Wagon loading are

NA:There is no mining operation during The monitoring period.

WATER QUALITY OF GROUND WATER

Annexure-III.&

	F			VVAILN	QUALITI	OF GRO	JIVU VVA	IEN				Annexure	?=III.@\
Sl.No.	Parameters	Oct-	17	Nov	-17	Dec	:-17	Jan	-18	Feb	-18	Mai	r-18
	٧	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2
1	Colour	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
2	Odour	U/O	U/O	U/O	U/O	U/O	U/O	U/O	u/o	U/O	U/O	U/O	U/O
3	Taste	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
4	рН	6.98	7.04	6.82	6.76	7.8	7.5	7.28	7.14	-	-:	-	
5	Turbudity	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
6	DS	78.0	84.0	74.0	78.0	80.0	88.0	185	165	-	-:	-	
7	Aluminium as Al	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Anionic Detergent as MBAS	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9	Boron as B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
10	Calcium as Ca	27.7	25.3	26.3	24.5	27.7	25.3	31.7	28.1	32.1	28.9	35.7	32.9
11	Chloride as Cl	29	26	25	21	29	26	34	29	32	28	36	33
1	Copper as Cu	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
13	Fluride as F	0.01	0.007	0.008	0.006	0.008	0.006	0.012	0.09	0.011	0.01	0.012	0.013
14	Residual free Chlorine	ND	ND	ND	ND	ND	ND	ND ,	ND	ND	ND	ND	ND
15	Iron as Fe	0.52	0.54	0.56	0.58	0.28	0.26	0.3	0.27	0.32	0.28	0.34	0.3
16	Magnesium as Mg	8	7.8	7.8	8.2	8	7.8	9	8.3	9.5	9	11.2	10.2
17	Manganese as Mn	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
18	Mineral Oil	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Nd
19	Nitrate as NO3	1.36	1.24	1.2	1.1	1.36	1.24	1.64	1.4	1.58	1.44	1.78	1.64
20	Compound as	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
21	Selenium as Se	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
22	Sulphate as SO ₄	3.6	3.28	3.23	3.14	3.6	3.28	3.84	3.68	3.92	3.78	4.24	4.08
23	Alkanity Total Hardess as Ca	94	89	90	87	94	89	104	95	109	100	124	114
24	CO ₃	102	95	95	97	102	95	116	104	119	109	135	124
2.5-	Cadmium as Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
26	Cynide as CN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27	Lead as Pb	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
28	Mercury as Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
29	Arsenic as as	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
30	Zinc as Zn	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
31	Chromium as Cr ⁺⁶	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
32	Poly Aromatic hydrocarbon	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
33	Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

NB:

GW 1: Hand Pump at zero point GW 2: Hand pump at Banka Bazar

ND : Not Detected UO : Un-Objectionable

OL: Odourless CL: Colorless

KALTA IRON MINE

01.11	WATER QUALITY			& GROUND	WATER	Annexure-IIIB
SI.No		3rd Qtr.	2017-18	4th Qtr	.2017-18	
	Locations >	W3_	W4	W3	W4	Limit as per IS 10500
1_	Colour (Pt-Co Scale)	11	14	18	25	5
2	Temperature (⁰ C)	24.2	24.2	30.1	30.1	
3	Odour	Odourless	Odourless	Odourless	Odourless	
4	рН	7.5	7.2	7	7.2	6.5-8.5
5	Do(mg/l)	6.4	4.2	6.28	4.5	0.0
6	Conductivity(in μS/cm)	212	222	232	226	
_7	TDS (in mg/l)	106	111	116	113	500
8	TSS (in mg/l)	5	7	4	8	300
9	TH (in CaCO3)	65	76	76	82	200
10	Calcium(in mg/l)	14.4	16.8	16.4	26	75
11	Magnesium(in mg/l)	7.01	8.2	8.5	4.1	30
12	Alkalinity(in mg/l)	42	54	56	50	200
13	Chloride (in mg/l)	22	32	20	22	250
14	Sulfate (in mg/l)	5	10	6	8	200
15	Phosphate (in mg/l)	3.14	2.25	3.89	3.25	200
16	Nitrate (in mg/l)	2.4	2.6	3.2	2.8	45
17	Copper (in mg/l)	0.02	0.02	0.02	0.02	0.05
18	Amm. Nitrogen (in mg/l)	BDL	BDL	BDL	BDL	0.5
19	Total Chlorine (in mg/l)	0.03	0.01	0.03	0.01	0.02
20	Hex. Chromium (in mg/l)	BDL	BDL	BDL	BDL	0.02
21	Manganese (in mg/l)	0.06	0.05	0.1	0.05	
22	Total Iron (in mg/l)	0.22	0.24	0.28		0.1
23	Fluoride(in mg/l)				0.22	0.3
24	Sulfide (in mg/l)	0.01	BDL	BDL	BDL	1.0
IR ·	Guinde (III mg/l)	0.002	0.003	BDL	0.003	0.05

NB:

W3 : Drinking Water & Ground Water-Kalta G.H. Tape Water

W4 : Hand Pump at Kalta Basti BDL : Below the Detectable Limit

NO : Not Objectionable

OL : Odourless AG : Agreable WATER QUALITY OF GROUND WATER

Annexure-III A

				WATER	QUALITY	OF GROU	JND WA	IER			1	Annexure	?-III 🍂
Sl.No.	Parameters	Oct-	17	Nov	-17	Dec	:-17	Jan	-18	Feb	-18	Mai	r-18
	٧	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2	GW1	GW2
1	Colour	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
2	Odour	u/o	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	u/o	U/O
3	Taste	OL	OL	OL	OL	OL	OL	OĽ	OL	OL	OL	OL	OL
4	рН	6.98	7.04	6.82	6.76	7.8	7.5	7.28	7.14	-	-	-	
5	Turbudity	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
6	DS	78.0	84.0	74.0	78.0	80.0	88.0	185	165	-	-		
7	Aluminium as Al	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
8	Anionic Detergent as MBAS	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9	Boron as B	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
10	Calcium as Ca	27.7	25.3	26.3	24.5	27.7	25.3	31.7	28.1	32.1	28.9	35.7	32.9
11	Chloride as Cl	29	26	25	21	29	26	34	29	32	28	36	33
J.~	Copper as Cu	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
13	Fluride as F	0.01	0.007	0.008	0.006	0.008	0.006	0.012	0.09	0.011	0.01	0.012	0.013
14	Residual free Chlorine	ND	ND	ND	ND	ND	ND	ND,	ND	ND	ND	ND	ND
15	Iron as Fe	0.52	0.54	0.56	0.58	0.28	0.26	0.3	0.27	0.32	0.28	0.34	0.3
16	Magnesium as Mg	8	7.8	7.8	8.2	8	7.8	9	8.3	9.5	9	11.2	10.2
17	Manganese as Mn	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
18	Mineral Oil	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Nd
19	Nitrate as NO3	1.36	1.24	1.2	1.1	1.36	1.24	1.64	1.4	1.58	1.44	1.78	1.64
20	Compound as	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
21	Selenium as Se	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
22	Sulphate as SO ₄	3.6	3.28	3.23	3.14	3.6	3.28	3.84	3.68	3.92	3.78	4.24	4.08
23	Alkanity Total Hargess as Ca	94	89	90	87	94	89	104	95	109	100	124	114
24	CO ₃	102	95	95	97	102	95	116	104	119	109	135	124
2 5	Cadmium as Cd	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
2	Cynide as CN	ND	ND	ND	ND	ND.	ND '	ND	ND	ND	ND	ND	ND
27	Lead as Pb	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
28	Mercury as Hg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
29	Arsenic as as	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
30	Zinc as Zn	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
31	Chromium as Cr ⁺⁶ Poly Aromatic	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
32	hydrocarbon	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
33	Pesticide	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

NB:

GW 1: Hand Pump at zero point GW 2: Hand pump at Banka Bazar

ND : Not Detected UO : Un-Objectionable

OL: Odourless CL: Colorless

KALTA IRON MINE

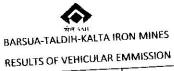
	WATER QUALITY	OF DRINKII	NG WATER	& GROUND) WATER	Annexure-IIIB
SI.No	PARAMETERS	3rd Qtr.	2017-18		.2017-18	
	Locations >	W3	W4	W3	W4	Limit as per IS 10500
_ 1	Colour (Pt-Co Scale)	11	14	18	25	5
2	Temperature (^u C)	24.2	24.2	30.1	30.1	
3	Odour	Odourless	Odourless	Odourless	Odourless	
4	pН	7.5	7.2	7	7.2	6.5-8.5
5	Do(mg/l)	6.4	4.2	6.28	4.5	0.5-0.5
6	Conductivity(in µS/cm)	212	222	232	226	
7_	TDS (in mg/l)	106	111	116	113	500
8	TSS (in mg/l)	5	7	4	8	300
9	TH (in CaCO3)	65	76	76	82	200
10	Calcium(in mg/l)	14.4	16.8	16.4	26	75
11	Magnesium(in mg/l)	7.01	8.2	8.5	4.1	30
12	Alkalinity(in mg/l)	42	54	56	50	200
13	Chloride (in mg/l)	22	32	20	22	250
14	Sulfate (in mg/l)	5	10	6	8	200
15	Phosphate (in mg/l)	3.14	2.25	3.89	3.25	200
16	Nitrate (in mg/l)	2.4	2.6	3.2	2.8	45
17	Copper (in mg/l)	0.02	0.02	0.02	0.02	0.05
18	Amm. Nitrogen (in mg/l)	BDL	BDL	BDL	BDL	
19	Total Chlorine (in mg/l)	0.03	0.01	0.03	0.01	0.5
20	Hex. Chromium (in mg/l)	BDL	BDL	BDL	BDL BDL	0.02
21	Manganese (in mg/l)	0.06	0.05	0.1	0.05	
22	Total Iron (in mg/l)	0.22	0.24	0.28	0.22	0.1
23	Fluoride(in mg/l)	0.01	BDL	BDL BDL	BDL BDL	0.3
24	Sulfide (in mg/l)	0.002	0.003	BDL		1.0
B ·	(3.002	0.003	BUL	0.003	0.05

NB:

W3 : Drinking Water & Ground Water-Kalta G.H. Tape Water

W4 : Hand Pump at Kalta Basti BDL : Below the Detectable Limit

NO : Not Objectionable


OL : Odourless AG : Agreable संल ६५०

BARSUA IRON MINE

	<u> </u>	W	ATER QUALITY	RESULTS OF EF	FLUENT	An	nexure - IV
L.NO	PARAMETERS	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18
	Locations >	EW-1	EW-1	EW-1	EW-1	EW-1	EW-1
	Total Suspended Solids	18	12	16.1	17.1	21.8	20.75
	рН	6.7	6.7	6.7	6.8	7.1	7.05
	BOD(3 days, 27 ⁰ C)	5.6	5.2	6.05	6.75	9.4	9
	COD	21.6	19.7	24.3	31.1	56.5	50.62
	Oil & Grease	ND	ND	ND	ND	ND	ND

NB:

): Not Detected

Annexure-V

SL.NO	VehivleID	Vehicle NO.	RESULTS (Hat	tridge Units)	Standard as per Vehicular Exhaust Emmission(1990- 1996) at Free acceleration
			46		65
	VE1	OR 14 L-6063	45		65
	VE2	VE2 OD 14 K-5258	41		65
	VE3	VE3 OD 14 C-9072			65
	VE4	VE4 OR 14 L- 6064	48		65
	VES	VE5 OD 14 C- 9071	46		65
	VE6	VE6 OR 14 Y -3496			65
	VE7	VE7 OD 14 E -9584	44		65
? 	VE8	VE8 OR 14 X 1819	41		65
8		VE9 OR 14 X- 9889	42		
9	VE9	VE10 OD 14 F-2932	38	<u></u>	65
10	VE10		34	97 19 <u>—107 — 19 — 1</u>	65
11	VE11	VE11 OD 14 F-2933	32		65
12	VE12	VE12 OD 14 F-2934	41		65
13	VE13	VE13 OR 14 K- 3830	43		65
14	VE14	VE14 OR 09 D -5378	45		65
15	VE15	VE15 OR 14 Q-2219	48		65
16	VE16	VE16 OR 14 U-8109			65
17	VE17	VE17 OA 0 - 7567	47		65
18	VE18	VE18 OR 14 V -0759	52		65
19	VE19	VE19 OSE - 9804	54		65
20	VE20	VE20 OD 09 G-3768	53		65
21	VE21	VE21 OD 09 G-1349	41		65
22	VE22	VE22 OR 14 J - 4681			65
	VE23	VE23 OR 02 BF- 2343	45		65
23	VE24	VE24 OD 14 E- 9664	42		65
24	VE25	VE25 EX -210 (EXCAVATOR) HI	TACHI 56		65
25		VF26 HM LOADER HINDUSTHA	N 65		65
26	VE27	VE27 HM LOADER HINDUSTHA	N		65
28	VE28	VE28 OR14T-9132 (TIPPER) HY	<u>VA</u>		65
29	VE29	VE29 OR14T-9133 (TIPPER) HY			65
30	VE30	VE30 OR09M-0288(TIPPER) AI			65
31	VE31	VE31 OR09K-2448(TIPPER) AN			65
32	VE32	VE32 OR09L-4356(TIPPER) AN			65
33	VE33	VE33 OR09L-5256(TIPPER) AN VE34 OR09K-8829(TIPPER) AR			65
34	VE34	VE34 OR09K-8828(TIPPER) AI	ww 50		65

^{*} Date of Monitoring: 19.03.2018