स्टील अथाँरिटी आँफ इण्डिया लिमिटेड

STEEL AUTHORITY OF INDIA LIMITED

राँ मेटेरियल्स डिवीजन

RAW MATERIALS DIVISION

बरसुआ लोंह खदान

BARSUA IRON MINES

P.O. TENSA - 770042

Phone- 06625-236026 Fax - 236031

Ref. No. BIM /GM/ E&L / 789(4)

Date: 6.06.2017

To,
The Additional Director (S)
El Division, Ministry of Environment & Forests,
ParyavaranBhawan, CGO complex, Lodi Road,
New Delhi – 110003

Sub: Six monthly status of compliance of conditions stipulated in Environmental Clearance (grant order of MoEF No. J-11015/351/2006-IA.II(M), dated 29th October 2010) for the period ending 31st March 2017.

Sir,

Please find enclosed herewith the updated six monthly compliance report with respect to the conditions stipulated by MoEF &CC, Govt. of India, New Delhi while granting Environmental Clearance to integrated Barsua-Taldih- Kalta Iron Ore Mines (ML-130) of M/s. Steel Authority of India Limited for production of 8.05 mtpa vide MoEF letter No. J-11015/351/2006-IA.II(M), dated 29th October 2010 for the period ending 31st March 2017. The report also contains the updated status of environmental monitoring of air, water and noise pertaining to the period ending 31st March 2017.

Thanking you,

Yours faithfully,

Barsua Iron Mine

Encl: As Above

Copy:

 The Additional Director (S), MoEF&CC, Govt. of India, Eastern Regional Office, A/3 Chandrasekharpur, Bhubaneswar-751023 (Odisha)

 The Member Secretary, Central Pollution Control Board, Paribesh Bhawan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi-110032

 The Member Secretary, State Pollution Control Board, Paribesh Bhawan, A/118 Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012 (Odisha)

Head Office: 5th & 6th Floor, Industry House, 10 Camac Street, Calcutta - 700017, Telex: 021-2621 Fax: 033-282-5630 Regd. Office: Ispat Bhawan, Lodi Road, New Delhi - 110003, P.B.: 3049, Telex: 031-62689, Fax: 011-694015

Status of Compliance (Barsua Part) to Conditions Stipulated in Environmental Clearance (vide order no. J-11015/351/2006-IA.II(M), dt. 29.10.2010) of

Integrated Barsua – Taldih – Kalta Iron Ore Mining Project (ML – 130), Village Tantra, District Sundergarh, Odisha, Raw Materials Division, SAIL

(Period: October 2016 to March 2017)

A. Specific Conditions

SI. No	Condition	Compliance Status			
	The Project proponent shall obtain consent to Establish and Consent to Operate from the State Pollution Control Board, Orissa and effectively implement all the conditions stipulated therein.	Consent to Establish was obtained from SPCB, Odisha for a capacity of 8.05 MTPA for Integrated Barsua – Taldih- Kalta Mining Project(ML-130) vide No. 609/IND-II-NOC-5182, dated 13.01.2012.Also, Consent to Establish has been amended vide No.16127/IND-NOC-5182, dt.5.11.2016 and this amendment shall be valid for five years. CTO has also been obtained from SPCB, Odisha vide No. 4479/IND-I-CON-1(A), dated 23.03.2017 for a quantity of 8.05 MTPA with validity up to 31.03.2019. Necessary actions are being taken to effectively implement the conditions stipulated therein.			
(ii)	The environmental clearance is subject to grant of approval of the State Land use Department, Government of Orissa for diversion of agricultural land for non agricultural use.	No agriculture land involved in the project for the purpose of mining and allied activities. Hence, question of diversion of agricultural land for non-agricultural purpose doesn't arise.			
(iii)	Necessary Forestry Clearance (FC) under the FC Act, 1980 for an area of 2347.641 ha is forest land involved in the project shall be obtained. Environmental Clearance is subject to grant of FC.	Final Forestry Clearance (Stage-II) for mining and allie activities & safety zone for 2nd RML period has bee granted by MoEF, Govt. of India vide letter No.F.No.8 90/1996-FC(pt.), dtd. 06.03.2013.			
(iv)	Environmental Clearance is subject to final order of the Hon'ble Supreme court of India in the matter of Goa Foundation Vs. Union of India in Petition (Civil) No.460 of 2004, as may be applicable to this project.	Noted for compliance.			
(v)	Environmental Clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 from the competent authority, as may be applicable to this project.	No notified National Park / Wildlife Sanctuary / Biosphere Reserve / Tiger Reserve are located within 10 kms from the Mining Lease boundary. Hence it is not applicable to this mining project However, a Site Specific Wildlife Conservation Plan(SSCP) has been prepared, approved by Conservator of Forests (WL) and Rs. 17,82,00,000/deposited in favour of State CAMPA A/c.No.344902010105428 towards cost of SSCP.			

Compliance status of EC

COMPHANCE STATUS OF EC		Integrated Barsua-Taldih-Kalta Mines		
SI. No	Condition	Compliance Status		
vi)	The project proponent shall ensure that no natural watercourse and drainage channels except first order channels Id1, Id2, Id3, Id4, Id5, Id6, Id7 and Id8 passing through the mine lease shall be diverted. The channels shall be so diverted that it finally meets its final natural course.	Due precautions are being taken and ensured that no natural watercourse / drainage channels obstructed due to any mining operation at the mines. So far only Id1, Id2 & Id8 have been diverted and finally meet their final natural course.		
(vii)	The top soil shalf temporarily be stored at earmarked site(s) only and it should not be kept unutilized for long. The topsoil shall be used for land reclamation and plantation.	Though the generation of top soil is very less, it is being stacked separately and used rehabilitation of dumps and other areas through plantation. However, during the period around 150 tonnes of top soil have been recovered from Taldih block and stacked separately for plantation, coir matting and purposes and processing the stacked separately for plantation, coir matting and purposes and purposes.		
(viii)	The OB generated shall be stacked at earmarked dump site(s) only and it should not be kept active for a long period of time and its phase-wise stabilization shall be carried out. There shall be nine external OB dumps, the project proponent shall carry out slope stability study through an expert organisation like CIMFR, Dhanbad for attaining the proposed height of dump of 60m in three lifts and submit report to the ministry and its Regional Office within three months. Proper terracing of the OB dumps shall be carried out so that the overall slope of the dump shall be maintained to 27°. Compliance status shall be submitted to the MoEF and its Regional Office located at Bhubaneswar on six monthly basis.	plantation, coir-matting and nursery work. The over burden (OB) / sub-grade ore generated during the mining operations is being stored at earmarked sites as per the approved Scheme of Mining. Phase wise stabilization with installation of coir mats and broadcasting of grass seeds are carried out as per approved schemes. During the period, installation of geo-green coir mats over an area of 10000 sqm. area of Dump-8 at Barsua Iron Mine have been completed to control surface run-off and erosion. For effective stabilization, terracing of the OB dumps with overall slope of the dump is being maintained to below 27°. Further, budgetary offers have been received from NIT, Rourkela and IIT, Kharagpur for conducting slope stability study.		
(ix)	Catch drains and siltation ponds of appropriate size shall be constructed around the mine working, mineral and OB dumps to prevent run off of water and flow of sediments directly into the agricultural fields, the first order channels, the Samaj Nallah, the Kuradihi Nallah, and other water bodies. The water so collected should be utilized for watering the mine area, roads, green belt development etc. The drains shall be regularly de-silted particularly after	During the period, proposals are in tendering stage to construct 3Nos. of dry-boulder check dams with wire mess and a siltation pond at Taldih block approaching to Tantara and Phuljhar village for management of surface run-off which will also minimize soil erosion and choking of streams. Also, another proposal has been initiated at Kalta to construct 2 Nos. of Check dams of 25m X 2.0/1.5 m X 2.5m and 30m X 2.0/1.5 m X 2.5m below Dump-9 & 10 across the nallah connecting the Samaj nallah. During the period, de-silting of 8000 cbm.(approx.)		

SI. No	Condition	Compliance Status
	the monsoon and maintained properly. Garland drains, setting tanks and check dams of appropriate size, gradient and length shall be constructed around the mine pit, dumps to prevent run off of water and flow of sediments directly into the agricultural fields other water bodies.	volume of area near Gorakhpur site at Kalta Iron Mine have been de-silted flow of Kuradih Nallah. Also, at Barsua Iron Mine suitable garland drain have been constructed to channelize surface run-off of 3E area into an abandoned pit located inside the mine area with provision of intermediate baffle walls.
(x)	Dimension of the retaining wall at the toe of the over burden dumps and the OB benches within the mine to check run-off and siltation shall be based on the rain fall data.	Toe walls, garland drains and siltation ponds at the OB Dumps have been constructed to control the surface runoff from the OB dumps. Based on the rainfall of the region, 1.5 to 2.0m. width and 1.5m to 2.0m. height toe walls and 1.0m. width and 1.50m. depth garland drains were provided.
(xi)	The water recovery and spill way system shall be so designed that the natural water resources are not affected and that no spill water goes into the nearby Karo River and other water bodies.	The tailing dam top is at 420.5m. AMSL. Maximum settled slime level is at 416.5m. AMSL and the spill way is at 418.0m. AMSL. The overflow clean water after siltation of slimes in the pond is channelized to the natural stream. The quality of overflow water is monitored regularly and found within the norm. However, system for recovery and recycling of clean water from the tailing pond has been provided at Barsua Iron Mine under Zero Discharge Project.
(xii)	The project proponent shall carry out conditioning of the ore with water to mitigate fugitive dust emission, without affecting flow of ore in the ore processing and handling areas.	Dry Fog System (DFS) and wet screening arrangements have been provided in the Ore Handling Plant to mitigate fugitive dust emission, without affecting flow of ore in the ore processing and handling areas.
(xiii)	The effluent from the ore beneficiation plant shall be treated to conform to the prescribed standards and the tailings slurry shall be transported through a closed pipeline to the tailing dam.	Effluent generated from the ore beneficiation plant is being treated in Thickeners followed by Tailing Ponds. The clear water to the tune of 40 % is being recycled and the underflow from thickener is discharged into Tailing Dam. As the tailings dam is hiving adequate capacity and the Barsua Mine is not being operated since May 2015, presently there is no overflow from the tailings pond except seepage from the dam body. The quality of the dam seepage water is being monitored and found to be in compliance with the discharge quality standards.
(xiv)	The project proponent shall take necessary safeguard measures to ensure that there is no leaching from the pond.	The Tailing Pond at Barsua Iron Mine is located on the hard & plain area and is in operation since 1969. As iron ore in the region does not containing any heavy metals and no chemicals are being used in the beneficiation of

Compliance status of EC		Integrated Barsua-Taldin-Kalta Milles		
SI. No	Condition	Compliance Status		
		ore at the mine, leaching of metals from the pond is not expected. The quality of the ground water at downstream of tailing pond is measured regularly.		
(xv)	The decanted water from the tailing pond shall be re-circulated and there should be zero discharge from the tailing pond.	system for recovery and recycling of decanted water from the tailing pond has been provided at Barsua Iron Mine under Zero Discharge Project.		
(xvi)	Effective safeguard measures such as regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of particulate matter such as crusher zone, loading and unloading point and all transfer points during handling of the ore. Extensive water sprinkling shall be carried out on roads. It should be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the CPCB.	Regular water sprinkling through pressurized sprinkler of 28KL capacity (2 Nos.) at Barsua Iron Mine and with a 12 KL capacity at Kalta Iron Mine are being carried out effectively in all areas. Dry Fog System (DFS) and wet screening arrangements have been provided in the Ore Handling Plant to mitigate fugitive dust emission. Also, around 2.0 km length of permanent haul road has been covered with static water sprinkling system. All these dust control measures installed at the mines have significantly controlled fugitive dust emission and helped to maintaining the air quality in and around the mine below the prescribed standards.		
(xvii)	Plantation shall be raised in an area of 1658.803ha including a 7.5m wide green belt in the safety zone around the mining lease, OB dumps, around beneficiation plant, mine benches around tailing ponds, roads etc. by planting the native species in consultation with the local DFO. The density of the trees should be around 2500 plants per Ha. Green belt shall be developed all along the mine lease area in a phased manner and shall be completed within first five years.	Phase wise plantation by planting native species is carried out within or outside of the lease area and density it assessed as per the crown density of the area. Also, a scheme for Safety Zone plantation was prepared and phase wise plantation within safety zone of ML-130 it done by State Forest Department.		
(xviii)	The project authority should implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central ground water Board.	water harvesting and augmentation of ground water have been conducted and implementation of the measures at per recommendation is in process.		

omphanee	Status of EC	integrated barsaa raidiir narta mines			
I. No	Condition	Compliance Status			
(xix)	Regular monitoring of ground water level and quality shall be carried out in and around the project area (mine lease, beneficiation plant, pelletisation plant and tailing ponds) by establishing a network of existing wells and installation new piezometers during the operation, the periodic monitoring (at least four times in a year-pre monsoon (April-May) monsoon (August), post-monsoon (November) and winter (January); once in each season)] shall be carried out in consultation with the State GWB/Central GWB and the data thus collected may be sent regularly to the MoEF and its regional office at Bhubaneswar and the Regional Director, CGWB.	There are 3Nos of abandoned open wells all around the mines which are not in use viz, (i) Barsua Valley (ii) Zero point, Tensa (iii) Kalta Basti, Kalta for regular monitoring of ground water levels. Moreover, 3 Nos of bore wells have been dug to install Piezometers which have already been procured.			
(xx)	The groundwater and surface water in and around the mine including tailing ponds shall be regularly monitored at strategic locations for heavy metals. The monitoring stations shall be established in consultation with the Regional Director, CGWB and SPCB.	Regular monitoring for heavy metals of ground water in and around the mine is being carried out. Water quality for the period from October 2016 to March 2017 are placed in <i>Annexure</i> .			
(xxi)	Appropriate mitigative measures shall be taken to prevent pollution of the Karo River in consultation with the State Pollution control Board.	Detailed study has been conducted through IIT Kharagpur to assess the impacts of mining on water bodies and suggest measures to minimize the impacts. Some of the recommendations suggested by IIT, Kharagpur like silt traps, check dams, sedimentation ponds, plantation on the slopes have been made at various strategic locations and the same are under continuous implementation at other sites.			
(xxii)	Regular monitoring of the flow rate of the spring and perennial nallahs flowing in and around the project area shall be carried out and records maintained.	Regular monitoring of the flow rate of the spring and perennial nallahs i.e. Kuradih & Samaj at Barsua part and Najkura at Kalta part is being carried out and records are being maintained.			
(xxiii)	The project proponent shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water) required for the project.	State Irrigation Department for existing requirement i.e. 2,18,000 cbm. water per month exists.			
(xxiv)	Suitable rainwater harvesting measures on long term basis shall be planned and implemented in consultation with the Regional Director, Central ground Water	water harvesting & augmentation of ground wal in resources has been conducted and as per recommendational al a proposal is in process to take suitable measures for ra			

Integrated Barsua-Taldih-Kalta Mines

SI. No	Condition Condition	Compliance Status		
51. INO	Board.			
(xxv)	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operation and in transportation of mineral. The vehicles carrying the mineral shall be covered with a tarpaulin and shall not be overloaded.	Scheduled / Preventive maintenance of HEMM and light vehicles are undertaken regularly to keep the vehicular emissions under control. Light Vehicles are having pollution control certificate. Ore transportation from ore crushing and screening plant of Taldih block to SAIL railway siding area located at Barsua Valley by vehicles covered with tarpaulin.		
(xxvi)	Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.	Mineral handing plant have been provided with the dust control measures like 'Dry Fog System' (DFS) at hopper and other transfer units, covering of conveyors belt etc.		
(xxvii)	Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure of dust and take corrective measures, if needed. Health records of the workers shall be maintained.	Occupational health surveillance programs of the workers are being undertaken periodically to observe any contractions due to exposure of dust. Health records of the workers are maintained.		
(xxviii)	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and record maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.	Pre-placement medical examination and periodical medical examination of the workers engaged in the project are carried out and record maintained. Schedule of health examination of the workers is also drawn and followed accordingly.		
(xxix)	Sewage treatment plant shall be	Individual septic tank with soak pits has been provided in the colony. Moreover, a study have been carried out by M/s. WATENVA SOLUTION PVT LTD, Bhubaneswar for stabilization of STP at colony. ETP has been provided for treatment of effluents from the ore beneficiation plant consisting of Thickeners followed by Tailing Pond. About 60% of clear water from the Thickener as overflow and recycled back to the system. The underflow from the Thickener is being drained to the Tailing Pond for further settling of solids.		
(xxx)	The R&R of the project affected people, if any shall be carried out as per the NPRR.			
(xxxi)	Digital processing of the entire lease area using remote sensing technique			

I. No	Condition	Compliance Status
	years for monitoring land use pattern and report submitted to MOEF and its	December 2013. Procurement of satellite imageries for the period of 2016 is under process. The study report in this regard will be submitted soon
(xxxii)	Bhubaneswar. Provision shall be made for the housing of construction labour within the site with all necessary	SAIL has a well developed township at Tensa and Kalta with residential accommodation for its workers with all necessary infrastructure and construction such as LPG gas
	infrastructure and construction such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, creche etc. The housing may be in the form of temporary structures to be removed	connection, electricity for cooking, welfare amenities like toilets, safe drinking water and medical facilities etc. Whenever required, the construction labour are hired from the local villagers and only few are being hired from outside, for which housing facilities along with necessary
	after the completion of the project.	infrastructure are being provided at the existing colony of the mines.
(xxxiii)	The project proponent shall take all precautionary measures during mining operation for conservation and protection of endangered fauna namely elephant, sloth bear, peacock etc. spotted in the study area. Action plan for conservation of flora and fauna. All the safeguard measures brought out in the Wildlife Conservation Plan so prepared	All precautions are undertaken for not to disturb the flora and fauna inside the lease area. All necessary facilities are being extended to the local Forest Department for implementation of the wildlife conservation activities regularly. An amount of Rs.10,69,14,469.00 toward implementation of comprehensive wild life management plan prepared for Bonai-Keonjhar forest division Activities as per the Site Specific Conservation Plan are implemented.
	specific to this project site shall be effectively implemented.	
(xxxiv)	The critical parameters such as RSPM (Particulate matter with size less than 10micron i.e., PM10) SO ₂ and NOx in the ambient air within the impact zone, peak particle velocity at 300m distance or written the nearest habitation whichever is closer shall be monitored periodically. Further, quality of discharged water shall also be monitored for TDS, DO, PH and TSS. The monitored data shall be uploaded on the website of the company as well as displayed on a display board at the project site at a suitable location near the main gate of the company in public domain. The circular No.J-20012/1/2006. IA.II(M) dated 27.05.2009 issued by MoEF.	(CAAQMS) at Barsua-Kalta have been completed and data are being transmitted to SPCB server. The monitored data is being displayed at the main gate of the mine Copy of EC compliance along with environmental quality data is being uploaded to the company website www.sail.co.in.
38 44	which is available on the website of the Ministry www.envfor.nic.in shall also be referred in this regard for its	

Sl. No	Condition	Compliance Status
	compliance.	
n termina	- Palatratale into	
(xxxv)	A Final Mine Closure Plan along with details of Corpus Fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	A Final Mine Closure Plan along with details of corpus fund will be submitted to MoEF&CC, New Delhi 5 years in advance of final mine closure for approval.

B. General Conditions

SI. No	Condition	Compliance Status Mining is being done as per the approved Mining Plan/ Scheme of Mining and amended Environmenta Clearance.		
(i)	No change in mining technology and scope of working should be made without prior approval of the MoEF & CC.			
(ii)	No change in the calendar plan including excavation, quantum of mineral iron ore and waste should be made.	There will be no change in the calendar plan including excavation, quantum of mineral iron ore and waste should be made. ROM production at various mining blocks under ML-130 is kept within permitted capacity in the EC / approved Mining Plan. The quantity of ROM Production during October to March is as follows:		
		Plan(in mtpa) Actual(in mtpa)		
		BIM: ROM 1.65 Nil		
		Sub-Grade 0.84 0.020		
		OB Nil 0.572		
		TIM: ROM 0.70 0.231		
	mile strains A market management	Sub-Grade Nil 0.186		
		KIM: ROM 1.22 0.72		
		OB 0.03 0.135		
	Four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RSPM (Particulate matter with size less than 10 micron i.e., PM10), SO2 and Nox monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with SPCB.	Five nos. of ambient air quality monitoring stations at Barsua & Kalta Mines have been established based on the topography and meteorological conditions of the area. Regular ambient air quality monitoring of key parameters (PM2.5, PM10, SO2 and NOX) to mining industries as per the guidelines of MoEF&CC and CPCB is being done. Moreover, 3 Nos. of Continuous Ambient Air Quality Monitoring Stations (CAAQsS) at Barsua-Kalta have been completed and data are being transmitted to SPCB server.		

SI. No	Condition	Compliance Status		
(iv)	Data on ambient air quality RSPM (Particulate matter with size less than 10 micron i.e., PM10), SO2 and Nox should be regularly submitted to the Ministry of environment and Forest including its Regional office located at Bhubaneswar and the SPCB / CPCB in six months.	Ambient air quality monitoring data (PM2.5, PM10, SO2 and NO2) is being submitted to MoEF&CC, New Delhi and Regional Office, Bhubaneshwar along with the compliance reports. Air Quality report for the period October 2016 to March 2017 is placed as <i>Annexure</i> . Air quality data is also being submitted to SPCB and Central Pollution Control Board.		
(v)	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.	Fugitive dust emission on haul road is controlled by regular water sprinkling by mobile water sprinklers. Fugitive emission at hopper is controlled by pressurized water mist spray.		
(vi)	Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.	Regular maintenances and periodic checks of the HEMM are being carried out to control noise below 85 dB(A) in the work environment. The operators engaged in blasting/ drilling operations and operator of HEMM are provided with ear plug/ ear muffs with helmet. Use of these protective measures is ensured by educating the workers on ill effect of the prolonged excessive exposure to high Noise levels and daily checks by shift mining engineers regarding usage of ear plug/ear muffs.		
(vii)	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluent.	effluents from garages. The treated water from these ETPs are being used for plantation. Effluents generated from the beneficiation plants are being treated in Thickeners followed by Tailing Ponds. The clear water to the tune of 60% is being recycled and		
(viii)	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information or safety and health aspects. Occupational health surveillance program of the workers should be undertaked periodically to observe any contraction due to exposure to dust and take corrective measures, if needed.	dusty areas and ensured by daily checks. Training or safety and health aspects is being imparted on regular basis. A full fledged Occupational Health Centre(OHC is run by the mines for regular health surveillance Periodical Medical Examination (PME) of all working in the mines is being done at our OHC once in		
(ix)	A separate environmental management	at A full fledged Environmental Management Cell (EMC		

SI. No	Condition	Compliance Status
	cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.	has been established to look after environmental aspects headed by an experienced engineer with more than 10 years experience in the field of environment in the rank of Deputy General Manager, who directly reports to Head of Mines. He is further assisted by two more experienced officers for environmental management at mines. Besides, an E&L department at our HQ i.e. RMD, Kolkata with qualified and experienced environmental engineer who facilitates all the RMD mines. In addition to the EMC at mines level, an Environment & Lease Department at our headquarters i.e. Raw Materials Division, Kolkata with qualified (M Tech. in Environmental Engineering) and experienced environmental engineers who facilitates all the RMD Mines including Barsua – Kalta Mines in design, implementation and maintenance of various pollution control measures. Further, two senior and experienced persons in the fields of Forest and Environment have been engaged by SAIL as Advisors for guiding SAIL Mines in management of Environment and Forest aspects.
(x)	The funds carmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the MoEF&CC and its Regional Office located at Bhubaneswar.	Funds earmarked for environmental protection measures at the mines are booked separately and not being diverted for other purpose. During the period, expenditures in different heads for environmental protection measures in respect of Barsua Iron Mine are as follows: 1) Plantation: 2.10 lakh II) Water spraying: 5.10 lakh III) Environmental monitoring: 4.20 lakh IV) Construction of check dams/ toe wall: 8.60 lakh V) Installation of 3 nos. CAAQMS: 124.00 lakh VI) Stabilization of Dump-8: 9.95 lakh
(xi)	The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	The Barsua and Kalta Blocks under the ML-130 are operating since 1960 and 1966 respectively. Development work and installation of various facilities
(xii)	The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the	regional office of MoEF&CC by furnishing the requisition data information, monitoring reports etc.

		٠		
-	Δ	×	b	2
- 4		á	V	b
- 7	N)	4	4	e

SI. No	Condition	Compliance Status
	requisite data / monitoring reports.	
(xiii)	The project proponent shall submit six monthly reports on the status of compliance of the stipulated environmental clearance conditions including results of monitored data to the MoEF, its Regional Office Bhubaneswar, the respective Zonal Office of CPCB. The proponent shall upload the status of compliance of the EC conditions on their website and shall update the same periodically. It shall simultaneously be sent to the regional Office of the MoEF, Bhubaneswar, the respective Zonal Office of CPCB and SPCB.	Six monthly compliance reports on the status of implementation of environmental safeguards are being submitted to MoEF&CC, New Delhi, Regional Office, MoEF&CC, Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. Copy of the compliance report including environmental quality data is being uploaded to the SAIL web site i.e. www.sail.co.on.
(xiv)	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parisad/ Municipal corporation, Urban local Body and the Local NGO, if any, from whom suggestions,	Copy of clearance letter was notified in public places and community centers. A copy of the environmental clearance letter has already been sent to the Panchayat.
	representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	The clearance letter has been put on the Company website i.e. www.sail.co.on.
(xv)	The State Pollution Control Board should display a copy of the clearance letter at the regional Office, District Industry Centre and the Collector's Office / Tehsildar's Office for 30 days.	
(xvi)	The environmental statement for each financial year ending 31st March in Form-V as is maintained to be submitted by the project proponent to the concerned SPCB as prescribed under the EP Rules- 1986, as amended subsequently, shall also be put on the website of the company and shall also be sent to the Regional office of the MoEF, Bhubaneswar by e-mail.	Being complied with.
(xvii)	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter is available with the SPCB and also at web site of the MoEF at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of the Ministry located at Bhubaneswar.	dt.30.03.2016 for integrated Barsua-Taldih-Kalta Iron ore Mines (ML-130) has been advertised.

DETAIL ANALYSIS OF AIR QUALITY MONITORING BARSUA IRON MINE

		October 2016	3016	800		November 2016	or 2016			December 2016	er 2016			January 2017	2017			February 2017	2017			March 2017	2017	
		20000	2010			-																		
Location	RSPM (PM ₁₀)	PM _{2.5}	PM _{2.5} SO ₂	NO.	RSPM (PM ₁₀)	PM2.5	502	NO.	(PM ₁₀)	PM ₂₅	503	NO.	RSPM (PM10)	PM _{2.5}	503	NO.	(PM ₁₀)	PM _{2.5}	202	NO.	RSPM (PM ₁₀)	PM _{2.5}	50,	NO.
411	and the State of the Confidence of the Confidenc	. In David	Innellal .	and B. no.	her areas						-71													
Maleur		THE PERSON	CHANGE	10 10 10 10	The second second																			
Norm as per	100	09	80	80	100	9	98	08	100	9	8	08	100	9	08	80	100	09	80	80	100	09	80	80
27.0																								ŀ

" unit in µg/m"

A2 A6

Note: Ambient Air Quality Monitoring was conducted as per MoEF Notification No. GSR 826[E], dtd.16.11.2009.

 BOL

=

BOL

A1 AS

	SPM	SPM RSPM SO, NO, SI	\$0,	NO.	SPM	RSPM	502	NO.	SPM	RSPM	50,	NO.	SPM	RSPM	503	NO	SPM	RSPM	203	NO	SPM	7	RSPM	RSPM SO ₂
Norm as	700	350		9009	700	350	2000	0009	700	350	2000	9009	700	350	2000	0009	700	350	2000	0009	700	350		2000
Der IBM		10								,			9		-	3	,				•			¥
n													-					(0	,		2	ž		4
A3	4	Y	,	×		45		9.1																
44		×		·	(8)		-59				×			1.82		(4)	899	310	15	24	575	232		
***	12.0	63	90	-	166	62	90	11	206	68	12	21	267	106	13	19	375	121	13	19	2	4		
i	000	3	90	2	210	96	80	15	147	74	80	16	189	76	60	17	300	123	60	17	556	224		
0 0	017	20	3	2				,						1	N.		,					•		
OTE						,		,	15.4	3.8	t	17	177	7.0	11	16	215	85	11	16				-

Note: Fusitive emission standards as per MoEF Notification Na. GSR 809[E], dtd.4.10.2010 on iron are mining and processing. Particulate matter (PM)-1200 µg/m² at a distance of 25±2m. In the pre dominant downward direction from the source of generation. " unit in µg/m"

BDL - Below Detectable Limit (6µg/m³l

A1: Guest House, Tensa township Locations :

A5 : Barua valley, Township

A6: Administrative Building, BilM

A2 : Tantara Village

A10: Crusher Hopper

A3 : Screening Plant

A4 : Stock pile & wagon loading area (R/R Bin), Barsua Valley

A7: Excavation & Ipading at Mine face.

A8: Haul Road/Service Road

A9 : Drilling Point

FOR THE MONTH OF OCT-2016 TO MAR-2017 (HALF YEARLY)

KALTA IRON MINE

Α7	A2	A1	NAAOS	Dec	Norm of	a) ambient Air Quality in Residential, rural & other areas.		Location RSPM				
54	B	48		100		nt Air Qu	(PW:5)	RSPM				
28	T.	22		60		ality in R		PM ₂₅		00		
00	1	9		80		esidentia		SO2		Oct-16		
15	- 1	ta		80		rural & c		NO.				
54				100		ther area	7	(P.M.d)	RSPN			
28				60		35.		PM25		Nov-16		
o	0		3	080	3			3U ₂		-16		
: [10	1	4 1	ę	00			NO.	5			
1 3	70	1	66	100	100			(PM ₁₀)	RSPM			
0	51	1	37		60			1	DN.		De	DETAI
4	(D)		11		80		3		503		Dec-16	LANALYS
1	17	Į.	15		80				NO.			IS AIR QU
	66				100			## 10 mar of	NON I	0.000		JALITY M
	31				60				PM ₂₅		IEC	DETAIL ANALYSIS AIR QUALITY MICHIORING
-	91			+	80	3		-	502		/T-UE	3
	1.0	0		1	00	9			NO.)		
1	1 10	78			ont	100			(PM ₁₀)	RSPM		
		59	:	,		60	1		C. C. A. C.	Na		Feb-17
	:	9	:	Vo	100	80			1	SO		-17
	;	18	1	1		80				NO		
	1	6.5	,	72		100			(PIVID)	KURIVI	2000	
5		552	1	36		60				PM2 5		Ma
	1	00	1	6		80				SO		/1-1EW
	1				Į.	. 86				NO.		

dtd 16 11 2009.

28

RSPM as 350 M 132	Note : Ambient Air Quality Monitoring was consucced as personal forms of English Emission / Work Zone Quality.	nission	/ Work	Zone Qua	olity.				200	CDA	50	NO.	MASE	SPM	502	NO.	-	RSPA	RSPM SPI	SPM		SPM SO ₂ NO _x	SPM SO2	SPM SO ₂ NO _x
350 350 132	D SAINCH.		S	NO	RSPM	SPM	SO ₂	NO.	RSPM	SPIN	202	, Louis		+		-							E000	E000
	-	SPM	202	INCX.	1961								300		700	700 5000	_	5000 5000	5000 5000 350	5000 5000 350 700	5000 5000 350	5000 5000 350 700	5000 5000 350 700 5000	5000 5000 350 700 5000 5000 350
		700	5000	5000	350	700	5000	5000	350	700	5000	5000	350		700		2000	, coop	1000		1000		1	
										;	1	1			i i	ı	+							
			:	-	1										4									
	-				1				:	1		1	+		-	+			279		279	279 807	279 807 16	279 807 16 22 170
	-	310	10	T	1				416	1056	14	23			1	+	+	1		1				
			1	,	1			7.5		:	ţ .	:	-		ı							100	C 250 (10)	100 100 100 120 120 120 120 120 120 120
-		390	15	21	144	390	1.0	2.4	-	27.4	-	19					-		1.000	1.000	1.380	1000	1000	1000
		1			1	-	100	***	644				-						: : :		: : :	: : : :		
A9						1	1							1	1									

* unit in µg/m

Note:

BDL - Below Detectable Limit (6µg/m³⁾

Locations

A1 Kalta Township

AZ Kaita Basti

A3:Derilling point

A4 Excavation & Loading the mine face

AS Haul Road/Service road

A6: Mobile crushing & screening plant Area

A7 - Kalta Admn Bldg.

AB Roxy Railway Siding Hutting Area No.-3 (near UNION Office)

A9 Roxy Railway Siding Wagon loading area

NA:There is no mining operation during The monitoring period.

J. Badaik Dy. Mgr. (Min) E&L KIM, Kalta

BARSUA IRON MINE

WATER OUALITY OF GROUND WATER

CI NO						-			No. Jan										
01.140	PARAMETERS	200	Oct-16			Nov-18		-			2010	7/0/	83	We	W7	W8	We	W7	W8
	Locations >	We	7W	W8	We	L/M	W8	9M	M	N N	0					-	9	80	196
1	(alang Or O soule)	15	80	on	12	1	F	12		11	7	00	80	118	22	200	0 7	90 00	23.5
	Colour (True Scare)		, ,	000	22.7	24.4	24.8	23.3	23.6	23.5	23.2	23.3	23.4	23.3	23.6	23.5	57	23.3	2.04
2	Temperature ("C)	23.5	43.4	7:07	-		7	7	C	0	6	9	OF	5	O.	70	OL.	70	6
9	Odour	7	9	7	6	7	5	3	3			2	DA DA	AG	AG	AG	AG	AG	AG
4	Taste	AG	AG	AG	AG	AG	AG	AG	AG	20	2	2			10	7.1	7.6	7.2	7.1
	1	7.2	7.6	7.4	7.8	7.2	6.9	7.6	7.7	7.1	7.7	7.7		7:-	4		0	324	248
0	Conductivity(in uS/cm)	0	104	178	310	166	380	210	150	222	182	88	122	218	212	244	00	77	2
ထ		107			456	6.0	190	105	75	111	91	49	61	109	106	122	44	110.5	124
~	TDS (in mg/l)	91	16	00	20	3		4	0		N)	0	v)	21	60	15	9	12	16
60	TSS (in mg/l)	7	9	7	16	-	2	2		1	10	00,	RO	145	108	74	54	102	116
on	TH (in CaCO3)	51	45	74	7.4	135	88	5	117	9	9	27	40	9 10	300	17	12.8	24.8	29.6
6	Calcium(in mg/l)	14	13	23	23	14	21	24.1	39	18.1	26	14	0	20.00	0.00	u p	6 3	0.7	10.2
2		,	(7)	4	4	60	4	3.1	8 4	3.2	3.2	42	3.8	13.5	8.2	0.7	200		
-	Magnesium(in mg/l)		,	2.0	ec.	+	20	27	12	17	9	17	21	42	64	99	28	88	62
12	Alkalinity(in mg/l)	28	17	17	3		4.4		17	19	10	15	17	4	23	21	11	25	22
13	Chloride (in mg/l)	24	20	22		77						**	a	22	7	BOL	10	60	10
14	Sulphate (in mg/l)	20	19	21	24	9	00	20	1	0		000	200	0.80	0.13	1.59	0.05	0.18	1.55
15	Phosphate (in mg/l)	0.05	0.11	0.17	0.027	0.02	0.07	0.022	80.0	90.0	210.0	000	000	0 27	23	at.	1.2	2.6	2.5
ů.	Nitrate (in mg/l)	2.2	2.6	2.2	0.7	1.2	1.8	0.17	2.1	2.6	0.22	9	7.7	170	4.4	700	100	0.03	0.04
:	(l) mayor	0.02	0.02	0.02	0.01	90.0	0.15	10.0	0.04	0.05	0.01	90.0	0.07	0.03	50.0	5		200	000
		30.0	BDI	BDL	0.1	BOL	0.13	0.1	BDL	0.17	0.1	0.11	0.13	0.1	0.07	0.08	0.04	0.0	000
- 28	Amm. Nitrogen (in riight)	200	000	000	0.02	0.04	0.03	0.02	0.02	0.03	0.07	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02
19	Total Chlorine (in mg/l)	NO.	BOL	BOL	6000	BDL	BOL	BDL	BDL	80f	900.0	BDL	BDL	BDI.	0.012	0.014	BDL	0.012	0.013
20	Hex. Chromium (in mg/l)	2 2	0.03	0.04	0.08	0.04	0.1	0.02	90.0	-80.0	0.02	0.02	60.0	0.04	80.0	0.2	0.04	10.07	0.2
21	Manganese (in rig/l)	200	0 40	0.26	0.84	0.18	0.28	0.46	0.19	0.26	0.24	0.28	0.27	2.44	0.18	1.77	0.14	0.18	1.75
22	Total Iron (in mg/l)	0.43	5 6	2	Č	4000	0.011	BDL	0.007	0.012	0.009	0.005	0.01	0.004	0.008	0.013	0.005	0.012	0.013
23	Sulfide(in µg/l)	BOL	and a	100	3	0	C	500	000	BDL	0.01	0.01	0.01	0.01	0.02	BOL	0.02	0.02	0.01
24	Fluoride(in mg/l)	0.07	0.02	0.03	BOL	BDL	BOL	000	40.0										

NB

W6: Hand Pump at Saraswati Shisu Vidyamandir, BN W7: Hand Pump at Zero Point, Tensa W8: Hand Pump at Banka Bazar, BN BDL: Below the Detectable Limit

Annex-11(B)

ON O	PARAMETERS	00-16	-16	Nov-16	16	De	Dec-16	jar	Jan-17	Feb-17	-17	IV1	Mar-17
	I negrons >	EW	Wa	W3	VVA	W3	W/A	W3	W4	W3	W4	W3	W4
	Colour (Ph.Co Scale)	00	a i		0	Φ.	12	us.	. 6	5	7	6	
2	Temperature (°C)	25.8	25.1	22.00	25.1	22.1	22,4	23.2	23.6	23.8	23.1	23.7	23.2
ii ii	Occur	Unobjectionable	Odourless	Odourless									
	He	73	7.1	7.3	7.1	7.8	79	7.6	7.7	7.3	7.1	7.3	7.2
ji i	Conquetivity/in LS/cm	122	190	122	190	188	310	110	136	122	210	50	88
72	TOS in mail		20	2	28	. 94	155	5.5	68	19	105	25	44
0	Survey or a	10		10	6		200		2		70	10	21
7.	TSS (in mg/)	Δ	6	ži.	6	A	16	2	3	4	a	10	
can :	TH (in CaCO3)	58	77	58	77	39	74	50	70	62	78	986	86
9	Calcium(in mg/l)	a.	18.4	on.	18.4	11	23	10.6	19.6	14.4	15.2	35.6	32.2
0	Magnesium(in mg/l)	10.4	7.5	10.4	7.5	2.8	4	5.7	5.1	6.2	9.7	6.2	5.00
1	Alkalinity(in mg/)	13	26	13	26	16	38	11	21	2.4	28	29	
12	Chloride (in mg/l)	œ	18	00	18	. 1	44	9	15	00	16	20	
ű.	Sulfate (in mg/l)	2	4	2	4	100	24	5	7	2	4	18	
	Phosphale (in mo/i)	0.22	0.28	0.22	0.28	0.018	0.027	0.2	0.21	0.22	0.28	0.02	
ñ	Nitrate (in mo/	1.4	2.6	1.4	2.6	0.27 .	0.7	1.8	2.2	1.4	2.6	1.7	
on l	Copper (m.mg/l)	0.04	0.05	0.04	0.05	0.02	0.01	0.02	0.03	0.04	0.05	0.02	
	Amm Nitrogen (in mg/l)	0.05	0.03	0.05	0.03	108	0.1	0.04	0.03	0.05	0.03	BOL	
COD .	Total Chlorine (in mg/l)	0.02	0.02	0.02	0.02	0.02	BDL	0.02	0.02	0.02	0.02	0.01	0.01
-	Hex Chromium (in mg/l)	BDL	BDL	108	BD1	0.004	0.009	108	300	BDL	108	BDL	800
-	Mangagese in mg/1	0.02	10.0	0.02	0.01	0.18	0.22	0.01	0.01	0.04	0.02	0.03	0.04
24	Total Iron (in ma)	0.11	0.53	0.11	0.53	1.0	0.32	11.0	0.24	0.11	0.52	0.16	
22	Fluoride in mol	108	9DL	BDL	BOL	108	108	108	108	108	8DL	BOL	BOL
22 1	Sulfing to mail	0.00	10.0	0.02	0.01	901	108	10.0	10.0	0.02	0.01	0.02	0.03

NB

W3 Dinnking Water & Ground Water-Kalta G H Tape Water

W4 Hand Pump at Keira Bast:

B0L Below the Detectable Limit

NO Not Objectionable

OL Oddorfess

AG Agreable

J. Badaik Dy. Mgr. (Min) E&L KIM, Kalta of Crew

DANSUA IKUN MINE

L.NO	PARAMETERS	Oct' 2016	Nov' 2016	Dec' 2016	Jan' 2017	Feb' 2017	March' 2017
	Locations >	W4	W4	W4	W4	W4	W4
1	Color (Pt-Co Scale)	12	11	8	9	47	9
2	Temperature (°C)	23.2	23.3	22.8	22.9	23.9	24.2
	рН	7.4	7.9	7.7	7.8	7.5	7.5
4	Conductivity(in uS/cm)	120	210	188	166	156	148
5	TDS (in mg/l)	60	105	94	83	78	74
6	TSS (in mg/l)	7	7	4	5	1	6
7	TH (in CaCO ₃)	74	42	59	61	41	42
8	Calcium(in mg/l)	18.6	15	19	21	15.2	11.2
9	Magnesium(in mg/l)	6.7	1.1	2.8	2.1	0.72	3.3
10	Alkanity(in mg/l)	22	22	19	17	32	26
11 -	Chloride (in mg/l)	17	3	9	8	12	10
12	Sulphate (in mg/l)	. 18	BDL	BDL	BDL	BDL	BDL
13	Phospate (in mg/l)	0.18	0.08	0.11	0.41	1.69	1.31
14	Nitrate (in mg/l)	2.1	0.17	0.22	0.27	0.05	0.03
15	Copper (in mg/l)	0.06	1.7	2.1	1.7	1.6	1.1
16	Ammo. Nitrogen (in mg/l)	BDL	0.14	0.19	0.15	0.14	0.07
17	Total Chlorine (in mg/l)	0.02	0.03	0.02	0.02	0.01	0.02
18	Hexa. Chromium (in mg/l)	BDL	BDL	BDL	BDL	0.018	0.015
19	Manganese (in mg/l)	0.2	0.02	0.02	0.01	0.03	0.08
20	Iron (in mg/l)	0.19	0.11	0.17	0.22	0.08	0.14
21	Sulphide (in μμg/l)	BDL.	0.016	0.019	0.038	0.008	0.011
22	Flouride(in mg/l)	0.06	0.3	0.2	0.22	0.08	0.02

IB:

V4 : Over flow from Tailing Dam BDL : Below the Detectable Limit

BARSUA IRON MINE WATER QUALITY OF STREAM SAMPLES/SURFACE WATER

	23	22	21	20	18	14	17	16	15	14	13	12	11	10	19	00		4	6	5	4	w	2	1		SI.No.	
	Sulfide(in µg/l)	Total Iron (in mg/l)	Manganese (in mg/l)	Hexa. Chromium (in mg/l)	Free Chiorine (in mg/l)		Ammo Nitrogen (in mg/l)	Copper (in mg/l)	Nitrate (in mg/l)	Phosphate (in mg/l)	Sulfate (in mg/l)	Chloride (in mg/l)	Alkalinity(in mg/l)	Magnesium(in mg/l)	Calcium(in mg/l)	in (iii Cecca)	THE CO.CO.	TSS (in ma/l)	TDS (in mg/l)	Conductivity(in µS/cm)	РH	Odour	Temperature (°C)	Colour (Pt-Co Scale)		Parameters	
0.03	0.001	0.18	0.03	308	10.0	0	0.03	0.03	2.9	0.03	17	19	21	w	u	,	35	5	52	104	7.4	OL.	23.4	06	W1		0
0.04	BDL	0.21	0.02	300	2 0	0 01	0.02	0.02	3.3	0.01	23	24	23	or	t	5	57		55	110	7.2	OL	23.2	9	W2	0.000	October 2016
0.02	0.002	0.23	0.02	800	2	0.02	0.03	0.02	3.5	0.03	27	28	21	U	:	=	400	2	44	00	7.3	OL	23.5	80	WS		50
0.1	0.005	0.06	0.02	000	5	0.02	0.06	0.06	2.2	0.1	BDL	7	14	+	.	10	. 29	0	90	180	7.9	OF.	22.9	7	W1		Nov
0.18	0.008	0.19	0.02		BDL	0.01	BDL	0.08	3.7	1.9	BDL	=	14			=	34	16	122	244	7.7	10	23.1	19	7.W		November 2016
BDL	0.003	0.33	10.0	2	BDL	0.02	0.05	0.07	1.6	1.4	BDL	9	0	0	10	9	30	0	55	110	7.5	9	22.8	-	CAA		16
0.1	0.005	0.06	0.04	000	801	0.02	0.06	0.06	2.2	1.0	308				-	00	24	0	90	180	7.9	OL OL	22.9	,	TAA	W	Dec
0.18	0.008	0.19		000	BDL	0.01	BOL	0.08	3.7	1.5	BUL	:	: ;	10	1.6	9	29	16	122	244	7.7	OL	23.1	1.5	5	W)	December 2016
BDL	0.003	0.33	2	0.01	BDL	0.02	0.05	0.07	1.6	1.40	1 000	2	0	00	1.6	12.2	37	0	55	110	7.5	OL	0.77			EW	16
0.1	0.007	0.11		0.01	801	0.02	0.05	0.03	2		03		0	17	1.8	9	30	2	18	797	1.1	9	2.63		7	Wı	Ja
0.2	0.008	+	0 22	0.02	BDL	0.02	0.04	0.07	2.8		50		13	21	1.6	8.2	27	13	111	111	1.1	4 5	2	32.6	10	W2	January 2017
0.02	0.005	-	0.36	0.01	BDL	0.01	0.03	0.06	1.0		1.9	2	7	=	2.9	14	47	w	*5	, ,	20 0	1 0	2	73.1	05	E.M	7
0.1	-	-	0.08	0.02	0.012	0.02	0.06	0.11		3 11	3.1	801	00	14	-	4.4	21	8-	75	9	184	75	2	23.2	41	W1	rep
0.18	0.000	0008	0.19	0.02	0.014	0.01	0.08	0.08		37	2.82	801	12	19	2.1	5.6	23	14	40,	107	214	75	2	23.1	43	W2	February 2017
BOL	0.000	0.003	0.23	0.01	BDL	0.02	0.05	0.08	2	17	1.5	BOL	10	16	3.1	9	35	1	;	200	112	7.5	2	23.8	18	W3	
1.0		0.005	0.08	0.03	BDL	0.02	0.00		2	2.5	2.48	BDL	00	14	2.9	4.00	24	u	-	9	182	7.5	2	23.5	10	WI	
01.0		0.005	0.14	0.03	BDL	0.01	0.00		013	2.5	2.84	BDL	12	19	2.9	6.4	28	*		+	186	7.5	٩	23.5	12	W2	
0.00	000	0.003	0.21	0.05	BDL	0.02	0.00	0.05	014	1.5	1.8	BDL	10	24	3.9	.00	38	:	13	62.5	125	7.5	5	13.8	14	W3	

NB:
W1: Upstream of Kuradih River
W2: Downstream of Kuradih River
W3: Samaj Nallah
BDL: Below the Detectable Limit
OL: Odourless

FOR THE MONTH OF OCT-2016 TO MAR-2017 (HALF YEARLY)

KALTA IRON MINE

Colour (Pt-Co Scale) W1 W2 W1 W2 W1 W2	1		Oct	-16	Nov-16		Dec-16	Dec-16	Jan-17	15			Fe0-1/	Fe0-17	Feb.17
Colour (PCCO Scale)	5 NO	24.9.we.e.e.	001-100					1	:w		W2	TW 23W		tw	wt wz wi
Colour (Pt-Co Scale)		9	W.	2.AA	2.44		7	5	21	5	33		33	33 58	33 58 31 6
Temperature (°C) 23.8 25.7 23.8 25.7 23.8 25.7 23.8 25.7 23.8 25.7 23.8 25.7 23.8 25.7 25.8 25.7 25.8 25.7 25.8 25.7 25.7 25.7 25.7 25.7 27.7	10	Colour (Pt-Co Scale)	89	100	200	100	22.9	23.1	23.2	7	2 23.6		23.6	23.6 23.2	23.6 23.2 23.4
Ogour Unobjectionable Unit 2 244 215 434 215 242 242 217 107.5 212 243 215 244 217 107.5 210 112 11 11 11 11 11 11 11 12 11 12 11 12 12 11 12 12 11 12<	KI	Temperature (°C)	23.8	201		1.07			100000000000000000000000000000000000000	W I	W I	2 2	algerona de la constante de la	and Unobjectionable Unobjectionable Unobjectionable Odourless	and Unnerconable Unobjectionable Unobjectionable
pH 7	w	Odout	Unobjectionable	unobjectionable	5.5	- algebolication	Propinging	Choolethouse	700000	100000	0.00	7.4	7.4	7.4 7.2	7.0 7.2 7.2
Conductivity (nS/cm) 434 215 434 215 180 24a TCS (in mg/l) 217 107.5 217 107.5 90 172 TSS (in mg/l) 11 12 11 12 11 12 0 16 TSS (in mg/l) 11 12 11 12 11 12 0 16 TSS (in mg/l) 11 12 11 12 11 12 90 15 TH (in CaCO ₃) 75 112 75 112 75 112 29 34 Calcium(in mg/l) 24.8 35.2 24.8 35.2 15 12 16 Magnessum(in mg/l) 45 5.8 3.1 5.8 3.1 5.8 14 19 Alkalinity(in mg/l) 45 5.8 45 5.8 15 2.8 1 16 19 Alkalinity(in mg/l) 1.5 2.8 1.5 2.8 1.5 2.8	-	Hd	7	7	7	7	6.7			175		.60	78E 03:	78E 03:	382 224
TOS (in mg/l) 217 107.5 217 107.5 90 TSS (in mg/l) 11 12 11 12 9 TH (in CacO ₂) 75 112 75 112 29 Calcium(in mg/l) 24.8 35.2 24.8 35.2 19 Magnesium(in mg/l) 3.1 5.8 3.1 5.8 15 Malkalinity(in mg/l) 45 5.8 45 5.8 14 Alkalinity(in mg/l) 15 2.8 15 2.8 1 Chioride (in mg/l) 15 2.8 15 2.8 14 Alkalinity(in mg/l) 15 2.8 15 2.8 1 Chioride (in mg/l) 0.0 0 0 80L 0 Sulfate (in mg/l) 0.03 0.12 0.03 0.12 0.0 80L Phosphate (in mg/l) 0.03 0.12 0.03 0.0 80L 0.0 0.0 80L Nitrate (in mg/l) 0.0	91	Conductivity(in "S/cm)	434	215	434	715	1381	744		7447		000	100	101 101	101 101
TSS (in mg/l) 11 12 11 12 11 12 11 12 11 12		TOS (In mort)	217	107.5	217	107.5	90	122		777		000	000	50 151 150 150 150 150 150 150 150 150 1	16 18
TH (in CaCO ₃) 75 112 75 112 29 Calcium(in mg/l) 24.8 35.2 24.8 35.2 20.8 35.2 10 Magnesium(in mg/l) 3.1 5.8 3.1 5.8 1 Alkalinity(in mg/l) 3.1 5.8 3.1 5.8 1 Chioride (in mg/l) 0 0 0 0 0 0 Sulfate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Nitrate (in mg/l) 0.08 0.06 0.08 0.06 0.2 Namo Nitrogen (in mg/l) 0.0 801 801 801 801 0.0 Hexa Chromium (in mg/l) <td>1</td> <td>TSS (in mg/l)</td> <td>11</td> <td>12</td> <td>11</td> <td>12</td> <td>0</td> <td>120</td> <td></td> <td>CP CP</td> <td></td> <td>i i</td> <td>100 E</td> <td>50 78</td> <td>5 14 10</td>	1	TSS (in mg/l)	11	12	11	12	0	120		CP CP		i i	100 E	50 78	5 14 10
Calcium(in mg/l) 24.8 35.2 24.8 35.2 20.8 Magnesium(in mg/l) 3.1 5.8 3.1 5.8 1 Magnesium(in mg/l) 3.1 5.8 3.1 5.8 1 Alkalinity(in mg/l) 45 58 45 58 14 Chioride (in mg/l) 45 28 15 28 7 Chioride (in mg/l) 0 0 0 0 80 80 Sulfate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Phossphate (in mg/l) 0.03 0.12 0.03 0.12 0.0 Nitrate (in mg/l) 0.03 0.05 5.5 6 2.2 Nitrate (in mg/l) 0.08 0.06 0.08 0.06 0.05 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 Ammo Nitrogen (in mg/l) 0.0 80L 80L 0.0 0.0 Friee Chiorine (in mg/l) 0.2 0.06 <t< td=""><td>00</td><td>TH (in CaCO₁)</td><td>75</td><td>112</td><td>75</td><td>1112</td><td>29</td><td>34</td><td>T</td><td>62</td><td></td><td></td><td>15 00</td><td>94 00 100</td><td>94 00 19 30</td></t<>	00	TH (in CaCO ₁)	75	112	75	1112	29	34	T	62			15 00	94 00 100	94 00 19 30
Magnesium(in mg/l) 3.1 5.8 3.1 5.8 4 Alkalinity(in mg/l) 45 58 45 58 14 Chloride (in mg/l) 45 58 45 28 7 Chloride (in mg/l) 15 28 15 28 7 Chloride (in mg/l) 0 0 0 0 80 80 Sulfate (in mg/l) 0.03 0.12 0.03 0.12 0.03 0.12 0.1 Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.03 0.12 0.1 Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.05 0.1 Nitrate (in mg/l) 0.08 0.06 0.08 0.06 0.05 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 Ammo Nitrogen (in mg/l) 0.0 8DL 8DL 0.06 0.02 Free Chlorine (in mg/l) 0.2 0.06 0.2 0.06 0.02<	(0)	Calcium(in mg/l)	24.8	35.2	24.8	35.2	13	1 2 2		0.7	20 21	21	31 100	63 7.2	7.2 12
Alkalinity(in mg/l) 45 58 45 58 14 Chloride (in mg/l) 15 28 15 28 7 Chloride (in mg/l) 0 0 0 0 301. Sulfate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Nitrate (in mg/l) 5.5 6 5.5 6 2.2 Nitrate (in mg/l) 0.08 0.06 0.08 0.06 0.05 Copper (in mg/l) 8DL 8DL 8DL 0.06 0.05 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 Copper (in mg/l) 8DL 8DL 8DL 0.06 0.05 Free Chlorine (in mg/l) 0.2 0.06 8DL 8DL 0.02 Hexa Chromium (in mg/l) 0.2 0.0 8DL 8DL 8DL 3DL Manganese (in mg/l) 0.43 0.1 <	6	Magnesium(in mg/l)	3.1	5.00	3.1	ion ion		4.0	T	25		10	10	19 45	19 45 52
Chloride (in mg/l) 15 28 15 28 Sulfate (in mg/l) 0 0 0 301. Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.1 Nitrate (in mg/l) 5.5 6 5.5 6 2.2 Nultrate (in mg/l) 0.08 0.06 0.08 0.06 0.2 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 Ammo Nitrogen (in mg/l) 8DL 8DL 0.06 0.05 Free Chlorine (in mg/l) 0.2 0.06 0.2 0.06 0.02 Hexa Chromium (in mg/l) 8DL 8DL 8DL 8DL 3DL Manganese (in mg/l) 0.2 0.2 0.2 0.2 0.2 Total Iron (in mg/l) 0.43 0.1 0.043 0.1 0.05 Sulfide(in ug/l) 0.012 0.018 0.012 0.02 0.02		Alkalinity(in mg/l)	45	58	45	U.S.	3 D	10		12		17	17	17 14	17 14 26
Sulfate (in mg/l) 0 0 0 0 0 0.12 0.06 0.22 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0	30	Chioride (in mg/l)	15	28	15	28	3	0 1	1	0 1		٥	0	0	0
Phosphate (in mg/l) 0.03 0.12 0.03 0.12 0.2 Nitrate (in mg/l) 5.5 6 5.5 6 2.2 Nutrate (in mg/l) 5.5 6 5.5 6 2.2 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 Ammo Nitrogen (in mg/l) 8DL 8DL 8DL 0.06 0.02 Free Chlorine (in mg/l) 0.2 0.06 0.2 0.06 0.02 Hexa Chromium (in mg/l) 8DL 8DL 8DL 8DL 3DL Manganese (in mg/l) 0.2 0.2 0.2 0.2 0.2 Total Iron (in mg/l) 0.43 0.1 0.43 0.1 0.05 Sulfide(in ug/l) 0.012 0.018 0.012 0.018 0.005	LAE	Sulfate (in mg/l)	0	0	0	0	801.	u u	1	200		0.1	0.1	0.03	0.03 0.04
Nitrate (in mg/l) 5.5 6 5.5 6 2.2 Copper (in mg/l) 0.08 0.06 0.08 0.06 0.05 0.05 Ammo Nitrogen (in mg/l) 8DL 8DL 8DL 0.06 0.02 0.06 0.02 0.06 0.02 0.01	2.	Phosphate (in mg/l)	0.03	0.12	0.03	0.17	1.0	3 7		2 4		2.1	2.1	21 52	2.1 5.2 6.1
Copper (in mg/l) 0.08 0.06 0.08 0.06 0.08 Ammo Nitrogen (in mg/l) BDL BDL BDL 0.06 0.2 Free Chlorine (in mg/l) 0.2 0.06 0.2 0.06 0.2 0.01 Hexa Chromium (in mg/l) BDL C02 0.2	01	Nitrate (in mg/l)	5.5	6	5.5	0	7.7	0.00		000		0.02	0.02	0.02 0.04	0.02 0.04 0.01
Ammo Nitrogen (in mg/l) BDL BDL BDL BDL BDL BDL Core Free Chlorine (in mg/l) 0.2 0.06 0.2 0.06 0.2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.06 0.01	6	Copper (in mg/l)	0.08	0.06	0.08	0.06	0.00	200		20.0		BDL	BDL	8DL 8DL	8DL 8DL 8DL
Free Chlorine (in mg/l) 0.2 0.06 0.2 0.05 0.05 Hexa Chromium (in mg/l) BDL BDL BDL BDL BDL Manganese (in mg/l) 0.2 0.2 0.2 0.2 0.2 Total Iron (in mg/l) 0.43 0.1 0.43 0.1 0.05 Sulfide(in µg/l) 0.012 0.018 0.012 0.018 0.005	27	Ammo Nitrogen (in mg/l	-	BDL	108	308	9000	000		000		0.03	0.03	0.03 0.01	0.03 0.01 0.01
Hexa Chromium (in mg/l) BDL	00	Free Chlorine (in mg/l)		0.06	0.2	0.06	20,02	000		82		JOB JOB	JOB JOB	BDL BDL	8Dt 8Dt 8Dt
Manganese (in mg/l) 0.2 0.2 0.2 0.2 0.2 Total Iron (in mg/l) 0.43 0.1 0.43 0.1 0.05 Sulfide(in µg/l) 0.012 0.018 0.012 0.018 0.005	9	Hexa Chromium (in mg/		900	3DL	BOL	001	000	t	01		0.2	0.2	0.2 0.06	0.06 0.05
Total fron (in mg/l) 0.43 0.1 0.43 0.1 0.05 0.015 0.005 0.012 0.018 0.005	20	Manganese (in mg/l)	0.2	0,2	0.2	202	0.02	0.02		0.33		0.15	0.15	0.15 0.54	0.15 0.54 0.12
Sulfide(in ±g/l) 0.012 . 0.018 0.012 0.013	21	Total fron (in mg/l)	0.43	1.0	0.43	0.1	2002	8008	1	0.01		0.011	0.011	0.011 0.012	0.011 0.012 0.013
	22	Sulfide(in µg/l)	0.012 .	810.0	210.0	0.000		C7.		0.01	0.01 0.01		10.0	10.0	0.01 0.01 0.02

NB

W1 Water Stream Water From Hill Leading To Intake Pond
W2 Najkura Natian Near N H - 215

BDL Below the Detectable Limit

X leadain La Mry (Min) E&L KIM, Kalta

BARSUA IRON MINE DETAIL MONITORING OF NOISE QUALITY

<u></u>	10	9	œ	7	6	Ch	4	ω	2	-	SI.No.	2
Hospital, BIM	Sceening Plant	B/V	Drilling	Excavation and Loading Point	Dumper Cabin	Haul Road	Secondary crusher	Crusher Control Room	VTC	Guest House	LOCATION	
41.8			82	90.6		78.9			50.2	44.8	Leq. dB (A)	Oct'
47.9	í	1.	98.1	100.2	,	99.0	1		62	56.4	Lmax, dB (A)	Oct' 2015
50.2	,		92.6	68.7	,	63.7			51.6	45	Leq. dB (A)	Nov
52			98.6	102.5	-	96.5			53	55	Lmax, dB (A)	Nov' 2015
45.6	e V	,		71.1	·	68.7		,	49.8	44.2	Leq. dB (A)	Dec
49.9		,		99.7		97.0		1	52.6	57	Lmax, dB (A)	Dec' 2015
39.7	1			76.8	e f	72.5	í	,	46.8	43.8	Leq. dB (A)	Jan
44		,		100.2		98.6			52.1	56.7	Lmax, dB (A)	Jan' 2016
51.2	100	78	-,	81.5		68.4		,	58.5	46.8	Leq. dB (A)	Feb
6.55		87.5	.,	99.8		98	1		64.2	62.8	Lmax, dB (A)	Feb' 2016
51.2	1	75		82.5	35	68.4	,		58.5	46.8	Leq. dB (A)	Marc
55.6	i	86.5		99.5	1	98.0	4	1	64.2	62.8	Lmax, dB (A)	March' 2015
During visiting hours. Distant vehicular noise was observed.	Not in operation	Loader and Dozer were in operation	Normal working condition, 10 mt. distance from drill	15 mt. distance from dumper and shovel.	Inside the cabin while in operation	10 mt. distance from the edge of haul road, while transportation of ore.	Not in operation	Not in operation	Normal working hours	No major source of noise, except vehicular movement at a times	Measuring Condition	