INTER PLANT STANDARD - STEEL INDUSTRY # FORMAT FOR STANDARD MAINTENANCE PRACTICES FOR PNEUMATIC CONTROL VALVES IPSS:2-07-097-14 **IPSS** INDIAN STANDARD DOES NOT EXIST (New Standard) #### 1. FOREWORD - 1.1. Interplant standardization activity in steel industry is being pursued under the aegis of Steel Authority of India Ltd (SAIL). This Interplant Standard was prepared by the Standards Committee on Computerization and Automation, IPSS 2:7 with the active participation of the representatives of steel plants, established manufacturers in this field & reputed consulting organizations; and was adopted on April, 2014. - 1.2. Interplant Standards on design parameters primarily aim at achieving rationalization and unification of parts and assemblies of process and auxiliary equipment used in steel plants and these are intended to provide guidance to the steel plant engineers, consultants and manufacturers in their design activities. #### 2. **SCOPE** 2.1. This Interplant standard provides and a Format for Standard Maintenance practices for pneumatic control valves #### 3. DESCRIPTION OF VALVE - 3.1. Control valves are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "set point" to a "process variable" whose value is provided by sensors that monitor changes in such conditions. - 3.2. The opening or closing of control valves is usually done automatically by electrical, hydraulic or pneumatic actuators. Positioners are used to control the opening or closing of the actuator based on electric or pneumatic signals. These control signals, traditionally based on 3-15psi (0.2-1.0bar), more common now are 4-20mA signals for industry, 0-10V for HVAC systems, and the introduction of "Smart" systems, HART, Fieldbus Foundation, and Profibus being the more common protocols. - 3.3. A control valve consists of three main parts in which each part exist in several types and designs: - i) Valve's actuator - ii) Valve's positioner - iii) Valve's body #### 4. INSPECTION GUIDELINES - 4.1. Following are the Inspection guidelines and the Technical guidelines for checking of pneumatic control and shut down basis are given in Annexure-A and Annexure-B respectively. - i) Running Inspection (Fortnightly) - ii) Periodical Inspection/Maintenance (Shutdown Basis) - iii) Inspection Format #### 5. **INSPECTION CHECKLIST** 5.1. The following inspection checklist format shall be the used on Fortnight basis: | SL
NO | AREA | CHECKPOINTS | REMARKS IF ANY | |----------|--|-------------|----------------| | 1 | Air Pressure for I/P | Kg/cm2 | | | 2 | Air Pressure for positioner | Kg/cm2 | | | 3 | Leakage of Instrument Air line | Y/N | | | 4 | Looseness of Linkages | Y/N | | | 5 | Leakage of Gland | Y/N | | | 6 | Leakage of Valve Flanges | Y/N | | | 7 | Movement of the Control Valve- Smooth | Y/N | | | | Valvo Omootii | | | 5.2. Inspection Checklist: The following inspection checklist format shall be the used on Shutdown basis: | CALIBRATION SHEET FOR CONTROL VALVE | | | | | | | |-------------------------------------|-------------|---------------------|---------|--|--|--| | TAG NO
DESCRIPT
VALVE | TION OF THE | lE | | | | | | DATE | | | | | | | | SL NO | % INPUT | % POSITION FEEDBACK | REMARKS | | | | | | | VALVE STEM MOVEMENT | | | | | | 1 | 0 | | | | | | | 2 | 20 | | | | | | | 3 | 40 | | Forward | | | | | 4 | 60 | | Torward | | | | | 5 | 80 | | | | | | | 6 | 100 | | | | | | | 7 | 80 | | | | | | | 8 | 60 | | | | | | | 9 | 40 | | Reverse | | | | | 10 | 20 | | | | | | | 11 | 0 | | | | | | # **ANNEXURE-A** # a. TECHNICAL GUIDELINES FOR CHECKING OF PNEUMATIC CONTROL VALVE | SL NO | Check Point Details | Frequency | How To Check | Criteria | Action (If out of Criteria) | |-------|---|-------------|---|--|--| | 1 | Instrument
Air Line and
Its Quality | Fortnightly | Visually check
for presence of
moisture and
required
Pressure | No
moisture to
be present | Instrument Manifold of the supply air by draining the drain valve. Check the source of pneumatic air Check for the functioning of drier. | | 2 | Air Filter
Regulator
and Gauges | Fortnightly | Visually check
for the proper
Pressure
required | Indication
of the
pressure
gauge. | In the gauge by increase/decreas e the pressure as per requirement. | | 3 | Positioner
and its
Protection | Fortnightly | Visually check
for Positioner
condition and its
fittings and its
Gauges | No loose
linkages of
the
positioner
and
pressure
required in
the gauge. | Arrest Leakages of the instrument air. Set right positioner fittings and its gauges. | | 4 | Leakage of
Diaphragm/
Power
Cylinder | Fortnightly | Physically check for leakages | There should not be any leakage | Arrest the leakage
by sending the
same to the
Instrumentation
Lab. | | 5 | Leakage
from Valve
Flanges | Fortnightly | There should
not be any
leakages | Physically
check for
leakages | Make action plan
for arresting the
same by isolating
the process with
SOP | | 6 | Leakage
from the
Valve Gland | Fortnightly | Visually check
for leakage from
the gland | No
leakage
should be
there | If yes check for
any increase in
temperature of the
actuator,
positioner. Make
plan to arrest the | # IPSS:2-07-097-14 | | | | | | same on
shutdown day. | |---|---------------------------|-------------|--|---------------------------------------|--| | 7 | Condition of the Linkages | Fortnightly | There should not be any misfit of the linkage. | No
looseness
to be
observed. | The link has to be properly tightened with proper tools and tackles. | ^{*} Only for Monitoring Purpose. To be used as Check List. # **ANNEXURE-B** # b. <u>TECHNICAL GUIDELINES FOR CHECKING OF PNEUMATIC</u> <u>CONTROL VALVE ON SHUTDOWN BASIS</u> | SI
NO | Area | Check
Point
Details | How To
Check | Criteria | Action (If out of Criteria)` | |----------|------------------------|---------------------------|--|------------------------------------|--| | 1 | Instrument
Air Line | Quality of
Air | Visually
check for
presence of
moisture | No
moisture
to be
present | Instrument Manifold of the supply air by draining the drain valve. Check the source of pneumatic air Check for the functioning of drier. | | | | Line
Leakages | Visually
check for any
pneumatic
leakages | No
leakages | From the Instrument Manifold to the Valve positioner and I/P | | | | I/P
Converter
and its
Protection | Visually
check for I/P
Convertor
condition and
its fittings | I/P
Converto
r to have
protectio
n against
dust and
moisture | Check whether the cable glanding is proper to avoid any water ingress. Check the condition of the fittings. Check for canopy for the I/P | |---|-------------------------|---|--|--|---| | 2 | Air Filter
Regulator | Condition of
AFR and Its
Gauges | Visually
check for
presence of
moisture and
dust | No dust or moisture to be present | Whether the filter is clean by isolating the same on a shutdown day and cleaning of the filter. Check for the condition of the increase/ decrease knob and drain plug. | | 3 | Positioner | Protection | Visually
check for
Positioner
condition and
its fittings and
its Gauges | Positione r condition and its fittings and its Gauges | Check for any leakage of the instrument air in the positioner fittings and its gauges. Check whether the cable glanding is proper to avoid any | | | | | | • | | |---|---|--|---|---|--| | | | | | | water ingress. Check the condition of the fittings. | | | | | | | Check for the linkages of the positioner and valve stem. | | | | Condition of
Mounting
Bolts | Visually
check
whether it is
loose or not | The nut and bolt to be firm without any loosenes s. | Make action plan for tightening the same by isolating the process with SOP | | 4 | Diaphragm
Actuator/
Power
Cylinder | Leakage of
the
Diaphragm/
Power
Cylinder | Physically
check for
leakages | There should not be any leakage | •Arrest the leakage by sending the same to the Instrumentatio n Lab. | | | | Protection
from Water
Ingress | Visually check for water protection is there or not | If installed outside there should be canopy. | •Install proper
sheeting of the
Control valve
and bellow for
the power
cylinder shaft | | 5 | Valve
Body | Condition of
Nuts and
Bolts | Visually check for Loosenes s of the nuts and bolts | No
loosenes
s should
be there | Make action plan for tightening the same by isolating the process with SOP | | | Flanges | Leakage
from the
Flanges | There should not be any leakages | Physicall
y check
for
leakages | Make action plan for arresting the same by isolating the process with | | | | | | | SOP | |---|-------------------|---------------------------------------|---|--|--| | 6 | Valve
Gland | Condition of
the Valve
Movement | Visually
check
for movement
of the valve
stem | No jerk
should
be there | •Check for gland packing and lubrication if required as per OEM recommendati on. | | | | Leakage
from the
Gland | Visually
check
for leakage
from the
gland | No
leakage
should
be there | •If yes check for
any increase in
temperature of
the
actuator,positio
ner. Make plan
to arrest the
same on
shutdown day. | | | | Condition of
Link Rods | Visually
check that
there should
not be any
looseness | No
loosenes
s to be
there | •The link has to be properly tightened with suitable tools and tackles | | 7 | Linkages | Condition of
Key Way | Check for any
slip between
the actuator
and the valve | No slip
should
be there | Set right without any slip as it shall lead to hysteresis | | 8 | Complete
Valve | Calibrating of the Valve | Check for the movement of the valve by using Current source, | Complet
e
moveme
nt of the
valve | Calibrate the valve as per requirement and by adjusting the positioner, I/P and /or by OEM guideline. | | | Checking
of the | End Limit
Switches | Check for the contact wrt the valve travel | Both the open and close limit switches should be enabled during operation | Adjust the limit switches as per requirement with proper SOP in proper for line isolation. Check for the air pressure for the positioner and I/P | |---|--------------------------|----------------------------|--|--|---| | 9 | | Volume
Boosters | Close the supply to the VB and check for the movement of the valve | It should
be slow | Check and repair/ replace the VB. | | a | valve
accessorie
s | Air Lock
Relays | Close the pneumatic supply | The valve should stop in the stay put condition | Check for any leakages in the pneumatic line Check for the functionality of the ALR | | | | Volume
Tank with
NRV | Close the pneumatic supply to the Volume tank | Manually close and see that there is one cycle of operation of the valve travel. | The Pressure of the Volume tanks should hold when Pneumatic supply is put off. Check for the NRV for its healthiness. |