INTERPLANT STANDARD - STEEL INDUSTRY STANDARD MAINTENANCE PRACTICE FOR PNEUMATIC OPERATED SHUT OFF VALVES Formerly-: (New Standard) No Corresponding IS Exists 0. Foreword - 0.1. Interplant standardization activity in steel industry is being pursued under the aegis of Steel Authority of India Limited (SAIL). This Interplant Standard has been prepared by the Standards Committee on Instrumentation and Automation IPSS 2:7, with the active participation of representatives from the steel plants, other concerned organizations and established manufacturer in the field, and was adopted on May, 2015. - 0.2. Shut off valves are used to isolate the process conditions such as flow, pressure, temperature and liquid level by fully opening or closing the process parameter like steam, coal tar, oxygen, N2, COG, BFG, LDG and others as per the signal received from the PLC/DCS. The valve can be Ball Valve. Globe valve or Butterfly Valve. - 0.3. The opening or closing of control valves is usually done automatically by electrical / pneumatic actuators. Pneumatic solenoid valves are used to control the opening or closing of the actuator based on electric signals. These control signals, traditionally are 220v ac, 110v ac, 24 dc. Depending upon the condition of the valve condition, feedback is taken the DCS with help of proximity switches, micro switches, limit switches, magnetic switches and few others as per process requirement. - 0.4. A shut off valve consists of four main parts namely: - i) Valve's actuator - ii) Valve's DC solenoid valve - iii) Valve's body - iv) Valve feedback system ## 1. Scope The scope consists of inspection of all the pneumatic operated shut off valves. - i) Inspection guidelines - ii) Running inspection (monthly) - iii) Periodical inspection / maintenance (shutdown basis) - iv) Inspection format # 2. Inspection Guidelines: Running Inspection | SI.
No. | Check
Point | Fre-
quency | How to Check | Criteria | Action (if out of criteria) | |------------|---|----------------|---|--|---| | | Details | . , | | | | | 1 | Instrument
Air Line and
its Quality | Monthly | Visually check
for presence of
moisture and
required
pressure | No moisture
to be present | Draining the drain value in instrument manifold of the supply air line Check the source of pneumatic air Check for the functioning of drier | | 2 | Air Filter
Regulator
and
Gauges | Monthly | Visually check for the proper pressure required | Indication of
the pressure
gauge | In the gauge by increase/
decrease the presence as per
requirements | | 3 | Leakage of Actuator | Monthly | Physically check for leakages | There should not be any leakage | Arrest the leakage by sending
the same to MED
Instrumentation Lab | | 4 | Leakage
from Valve
Flanges | Monthly | There should not be any leakages | Physically check for leakages | Make action plan for arresting
the same by isolating the
process with SOP | | 5 | Leakage
from the
valve gland | Monthly | Visually check
for leakage
from the gland | No leakage
should be
there | If yes check for any increase in temperature of the actuator. Make plan to arrest the same on shutdown day. | | 6 | Condition of
the
linkages/
couplings | Monthly | There should not be any misfit of the linkage | No looseness
to be
observed | The link / coupling has to be
properly tightened with proper
tools and tackles | # 3. Maintenance Guidelines: During shutdown | SI.
No. | Check
Point
Details | Frequenc
y | How to Check | Criteria | Action (if out of criteria) | |------------|--|-------------------------------|--|--------------------------------|--| | 1 | Quality of
Air | During
planned
shutdown | Visually check for presence of moisture | No moisture to be present | Instrument manifold of
the supply air by draining
the drain valve Check the source of
pneumatic air Check for the functioning
of drier | | 2 | Line
leakage of
instrument
air line | During
planned
shutdown | Visually check for any pneumatic leakage | Visually check for any leakage | From the instrument
manifold to the valve
positioner I/P | | 3 | Condition
of AFR and
its gauges | During
planned
shutdown | Visually check for presence of moisture and dust | No dust or
moisture to be
present | Whether the filter is clean by isolating the same on a shutdown day and cleaning of the filter Check for the condition of the increase/decrease knob and drain plug | |----|---|-------------------------------|---|---|--| | 4 | Protection
for
feedback
enclosure
box | During
planned
shutdown | Visually check for
feedback
switches
condition and its
fittings | The feedback
switches shall be
properly sealed
and properly
tightened | Check for any leakage of the instrument air in the DC valve fittings and its gauges Check whether the cable glanding is proper to avoid any water ingress. Check the condition of the fittings. | | 5 | Condition of Mounting Bolts of actuator/ power cylinder | During
planned
shutdown | Visually check
whether it is loose
or not | The nuts and bolts to be firm without any looseness | Make action plan for
tightening the same by
isolating the process with
SOP | | 6 | Leakage in the actuator | During
planned
shutdown | Physically check for leakages | There should not be any leakage | Arrest the leakage by
sending the same to the
MED instrumentation lab
for checking the | | 7 | Protection
from water
ingress on
actuator | During
planned
shutdown | Visually check for water protection is there or not | If installed outside
there should be
canopy | Install proper protection
for the shut off valve
actuator | | 8 | Condition of nuts and bolts of valve body | During
planned
shutdown | Visually check for looseness of nuts and bolts | No looseness should be there | Make action plan for
tightening the same by
isolating the process with
SOP. | | 9 | Leakage
from the
flanges of
valve body | During
planned
shutdown | There should not be any leakage | Physically check for leakages | Make action plan for
arresting the same by
isolating the process with
SOP. | | 10 | Condition of the valve movement | During
planned
shutdown | Visually check for movement of the valve stem | No jerk should be there | Check the gland packing
and lubrication if required
as per OEM
recommendation. | | 11 | Leakage
from the
gland | During
planned
shutdown | Visually check for leakage from the gland | No leakage
should be there | If yes check for any increase in temperature of the actuator Make plan to arrest the same on shutdown day | # IPSS 2-07-105-15 | 12 | Condition of link rods and its linkages | During
planned
shutdown | Visually check that there should not be any looseness | No looseness should be there | The link has to be properly tightened with suitable tools and tackles | |----|--|-------------------------------|--|--|---| | 13 | Condition
of key way
of actuator
and valve
shaft | During
planned
shutdown | Check for any slip
between the
actuator and the
valve shaft | No slip should be there | Set right without any slip
as it shall lead to
hysteresis | | 14 | Checking
of the end
limit
switches | During
planned
shutdown | Check for the contact wrt to the valve travel | Both the open
and close limit
switches should
be enabled during
operation | Adjust the limit switches as per requirement with proper SOP in proper for line isolation Check for the air pressure in the solenoid valve | | 15 | Checking
of the
volume
tank | During
planned
shutdown | Close the pneumatic supply to the volume tank | Manually close
and see that there
is one cycle of
operation of the
valve travel. | The pressure of the volume tanks should hold when pneumatic supply is put off. Check for the NRV for its healthiness | | 16 | Checking
of the
solenoid
valve | During
planned
shutdown | Give command from PLC | Manually check
whether the valve
is opening/closing
as per command | Make sure the process
line is isolated during
shutdown Check for voltage in the
coil during shutdown | | 17 | Checking
of the
complete
valve | During
planned
shutdown | Check for the movement of the valve by giving command from the PLC/DCS | Complete
movement of the
valve | Check for the open close condition of the valve as per requirement and adjust the feedback switches | # 4. Inspection checklist format : Fortnight basis | SI.No. | Area | Checkpoints | Emarks if any | |--------|--------------------------------------|-------------|---------------| | 1 | Air pressure for solenoid valve | g/cm2 | | | 2 | Leakage of instrument air line | Y/N | | | 3 | Looseness of linkages | Y/N | | | 4 | Leakage of gland | Y/N | | | 5 | Leakage of valve flanges | Y/N | | | 6 | Movement of the control valve smooth | Y/N | | | 7 | Condition of the limit switches | Y/N | | | 8 | Contact of the limit switches with | Y/N | | | | striker | | | # Check List for shut off valve on shutdown # 5. Inspection checklist format: Shutdown basis | SI.No. | Item to be inspected Ok / Not ok Cor | | | | | | Comments | | |------------------|--------------------------------------|--|-----------|---------------------------|---|-----------|-----------|--| | 1 | Pneumatic / hydrau | neumatic / hydraulic tubing leak tested | | | | | | | | 2 | Instrument housing | / actuator cov | ered | | | | | | | 3 | Wiring condition for | solenoid and | feedback | < swit | ches | | | | | 4 | Open/close comma | nd proper | | | | | | | | 5 | Open/close feedba | ck proper | | | | | | | | 6 | Air pressure for act | uator | | | | | | | | 7 | Leakage of the valv | e in the proce | ss line a | re clo | sing | | | | | | also | | | | | | | | | | | State (| Check Lis | st | | | | | | | State Description | State Description PLC input Local MI DCS | | | | | Ok/Not Ok | | | 0 | | | | | | | | | | 1 | | | | | | | | | | | | Ch | ecking | | | | | | | Transitio | Set point time de | Set point time delay in secs | | Actual time delay in secs | | Ok/Not Ok | | | | 0-1 | | | | 3000 | <u>, </u> | | | | | 1-0 | | | | | | | | | | Comments if any: | | | | | | | | |