

स्टील अथॉरिटी ऑफ इण्डिया लिमिटे STEEL AUTHORITY OF INDIA LIMITE

सेलम इस्पात संयंत्र SALEM STEEL PLANT Ref : PC-9(2)

Date: 28.06.2022

To The Additional Principal Chief Conservator of Forests, Ministry of Environment, Forests, & Climate Change (MoEFCC), Regional Office- South Eastern Zone, 1st & 2nd Floor, HEPC Building, N0.34, Cathedral Garden Road. Nungambakkam, Chennai-600034. Ph: 044-2822 2325.

Sir:

Sub: Expansion of SAIL, Salem Steel Plant, Tamil Nadu - Six monthly

Compliance Report for Environmental Clearance conditions - reg

Ref: MOEF Ref. No: F-No. J-11011/367/2006-IA II (I), dated 16th April, 2008

1. This has reference to the Environmental clearance issued for the above project vide ref. No: F-No. J-11011/367/2006-IA II (I), dated 16th April, 2008.

- Compliance report for the stipulations is enclosed vide Annexure 1.
- 3. We wish to inform you that the project was successfully commissioned in September 2010 after receipt of Consent to Operate from TNPCB. The analysis reports of Stack Emission, Ambient Air Quality & Fugitive emissions from Oct'21 - Mar'22 are enclosed along with statistical interpretation. (Annexure 2).
- 4. All the conditions stipulated in EC issued by MOEF & CC have been complied and Environment monitoring is carried out by SSP & Statutory authorities, as required.

Thanking you,

Yours faithfully For Steel Authority of India Limited Salem Steel Plant

Mg 18-02-2022

M K Nayak Chief General Manager I/c (Works)

Encl: As above

Copy to: The Member Secretary Tamil Nadu Pollution Control Board 100, Anna Salai, Guindy, Chennai 600 032.

SIX MONTHLY COMPLIANCE REPORT (Oct'21 – Mar'22) FOR

THE STIPULATED CONDITIONS OF ENVIRONMENTAL CLEARANCE

MoEF Ref.: F. No. J-11011/367/2006-IA II (I), Dt. 16.04.2008

Expansion of Salem Steel Plant at Salem, Tamil Nadu by M/s Salem Steel Plant (a unit of M/s Steel Authority of India Ltd.)

Status: Unit is in operation.

The Project was given Environmental Clearance on 16.04.2008. Consent to Establish (CTE) was obtained from TNPCB on 22.04.2008. The project was started on Apr'2008 and completed in September'2010. Subsequently, Consent to Operate (CTO) was obtained from TNPCB on 20.09.2010. Since then the units are under operation.

The status of compliance of the various conditions stipulated in the Environmental Clearance issued by MoEF on 16.04.2008 for the above project is given in the table below:

SI. No.	MoEF points	SSP's Compliance / Action Plan
i)	Bag filters shall be provided to the furnaces to control the particulate emissions below 50 mg/Nm ³ . Fume extraction system with gas cleaning facilities (bag house and canopy roof)	Bag filters have been provided in the electric arc furnace to control the particulate emissions and emissions are controlled within 50mg/NM3.
Syment 1 i	shall be provided to Electric arc furnace (EAF), Ladle furnace (LF) and Argon Oxygen Decarburization (AOD).	Common Fume extraction system for EAF & LF with gas cleaning facilities (bag house) & canopy for EAF have been commissioned for the equipment and working satisfactorily.
e přistěle)	Spent mond Man. The Parish State of the second Man. Specific of the second Man. Speci	Fume extraction system with Gas Cleaning Plant (Bag filter plant) equipment has been commissioned for AOD and working satisfactorily.
	Fume extraction system shall be provided to Hot Rolled Annealing and Pickling line, CRM and Mill.	Fume extraction system for the Hot Rolled Annealing and Pickling line, CRM and Mill have been provided and commissioned. The system is working satisfactorily.

SI. No.	MoEF points	SSP's Compliance / Action Plan
the trace of the second	Dust extraction and cleaning system shall be provided to shot blasting machine, storage, transfer points and material handling areas.	Dust extraction and cleaning system for shot blasting machine with bag filter equipment have been commissioned and working satisfactorily.
ed mined ruthindus diglingen U	Slab casting machine shall be provided with steam exhaust system and mould fume exhaust system.	Steam exhaust system for Slab casting machine and mould fume exhaust system have been envisaged along with the main equipment and equipment have been commissioned and working satisfactorily.
a light	Data on Ambient Air Quality, stack emissions and fugitive emissions shall be regularly submitted to this Ministry including its Regional Office at Bangalore/TNPCB and CPCB once in six months.	Latest data pertaining to Ambient Air Quality, stack emissions and fugitive emissions (Oct'21 – Mar'22) along with statistical interpretation are given in Annexure -2.
	Gaseous emissions including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry and regularly monitored and reports submitted to TNPCB / CPCB once in six months and Ministry's Regional Office at Bangalore.	In the expansion project, gaseous emissions including secondary fugitive emissions are being controlled within the permissible limits. Latest data pertaining to gaseous emissions & fugitive emissions is enclosed vide Annexure- 2.
to the color of th	Guide lines / code of practice issued by the CPCB shall be followed.	Applicable Guide lines / code of practice issued by the CPCB is being adhered to.
	In-plant control measures like tarring of roads, green belt and good house keeping shall be done within the plant premises to control fugitive emissions from all the vulnerable sources like raw material handling and storage areas shall be installed.	These measures like tarring of roads, development & maintenance of the green belt and good housekeeping activities are being carried out on regular basis.

SI. No.	MoEF points	SSP's Compliance / Action Plan				
e promin ton are great	All the material transfer points, discharge points and raw material storage area shall be completely covered.	points and storage area have been				
	Monitoring of fugitive emissions in the work zone environment shall be carried out regularly as per the CPCB guidelines and reports submitted to TNPCB / CPCB and Ministry's Regional Office at Bangalore.	Monitoring of fugitive emissions in the work zone environment is being carried and reports submitted to TNPCB and MoEF & CC regularly.				
iv)	Total water requirement shall not exceed 3.5 MGD [1.5 MGD (6,819 KLD) for expansion project].	Total water requirement is contained within 3.5 MGD level. Based on present production, an average of less than 2.0 MGD water is being drawn.				
	Direct cooling water from slab caster and Annealing and Pickling Line (APL) shall be treated in the effluent treatment plant (ETP) and recycled to the direct cooling circuit.	Direct cooling water from slab caster and AP Line is treated in a separate waste water treatment plant and the treated water is recycled to the direct cooling circuit.				
	Total water from ARS after recovery of acid shall be neutralized.	Water from ARS after recovery of acid is being neutralized.				
	The water from EAF, LF and AOD & CRM shall be routed through the cooling tower and pressure filter for recycling.	Indirect cooling water from EAF, LF, and AOD & CRM is being routed through the cooling tower and pressure filter for recycling.				
	Total Acid Recovery System (ARS) shall be provided to APL.	Total Acid Recovery System (ARS) has been installed & commissioned. The system is under operation.				
	All the treated process wastewater shall be recycled and reused in the process, dust suppression and green belt development.	All the treated process wastewater is being recycled and reused in the process, dust suppression and green belt development.				
	No wastewater shall be discharged outside the plant premises and 'Zero' discharge shall be strictly adopted as proposed.	'Zero' discharge is being maintained.				

Meanergood

SI. No.	MoEF points	SSP's Compliance / Action Plan
*	Dust extraction and cleaning system shall be provided to shot blasting machine, storage, transfer points and material handling areas.	Dust extraction and cleaning system for shot blasting machine with bag filter equipment have been commissioned and working satisfactorily.
	Slab casting machine shall be provided with steam exhaust system and mould fume exhaust system.	Steam exhaust system for Slab casting machine and mould fume exhaust system have been envisaged along with the main equipment and equipment have been commissioned and working satisfactorily.
	Data on Ambient Air Quality, stack emissions and fugitive emissions shall be regularly submitted to this Ministry including its Regional Office at Bangalore/TNPCB and CPCB once in six months.	Latest data pertaining to Ambient Air Quality, stack emissions and fugitive emissions (Oct'21 – Mar'22) along with statistical interpretation are given in Annexure -2.
ii)	Gaseous emissions including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry and regularly monitored and reports submitted to TNPCB / CPCB once in six months and Ministry's Regional Office at Bangalore.	In the expansion project, gaseous emissions including secondary fugitive emissions are being controlled within the permissible limits. Latest data pertaining to gaseous emissions & fugitive emissions is enclosed vide Annexure- 2.
	Guide lines / code of practice issued by the CPCB shall be followed.	Applicable Guide lines / code of practice issued by the CPCB is being adhered to.
iii)	In-plant control measures like tarring of roads, green belt and good house keeping shall be done within the plant premises to control fugitive emissions from all the vulnerable sources like raw material handling and storage areas shall be installed.	These measures like tarring of roads, development & maintenance of the green belt and good housekeeping activities are being carried out on regular basis.

4	सेल SAIL				
I. No.	MoEF points	SSP's Compliance / Action Plan			
) [Prior 'permission' for the drawal of 3.5 MGD from River Cauvery shall be obtained from the concerned department.	GO for 3.5 MGD water drawal obtained from Public Works Department, Govt. of Tamil Nadu having validity upto 31.03.2019 and renewal is recommended by PWD and under scrutiny by Gov.of Tamilnadu.			
1	Metallic scrap, scales and mill cuttings shall be recycled and reused in the process. Iron oxide pellet should be recycled to Steel Melting Shop (SMS). The EAF, AOD and LF slag from SMS shall be disposed of in the slag dump yard within the plant premises. SMS slag shall be used for road making. Dust from bag house of EAF & AOD gas cleaning system shall be stored in dust silo and disposed off in environment friendly manner. All the other solid waste shall be properly utilized or disposed off in environment friendly manner. All the hazardous waste like pickling sludge and waste diatomaceous earth shall be disposed off in the secured landfill (SLF) designed as per the CPCB guidelines. Waste oil shall be sold to registere recyclers. Green belt shall be developed in 33 garea all around the plant boundary an wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines in consultation without the plant boundary and wherever space is available as per CPCB guidelines.	Other solid waste (boiler ash, grinding swarf and shot blast dust) are being disposed off in environment friendly manner and sold commercially. All the hazardous wastes are disposed off in the secured Landfill (SLF) designed as per the CPCB guidelines. Waste oil is being disposed only to registered recyclers. SSP acquired total area of 1544.77 hectares (Natural vegetation = 600 hectares, Buildings = 267.10 hectares, Saline / rocky area = 400 hectares Total = 1267.10 hectares). In the area of 277.67 hectares available for Green belt, different			
ix)	All the recommendations mentioned in the Charter on the Corporate Responsibility the Environmental Protection (CREP) the Steel Plants shall be implemented.	the CREP conditions are not applicable directly to SSP as the unit is not covered under Integrate			

M leavelowy

zning How

B. GENERAL CONDITIONS:

SI. No.	MoEF points	SSP's Compliance / Action Plan
i)	The project authorities must strictly adhere to the stipulations made by the Tamil Nadu Pollution Control Board (TNPCB) and the State Government.	This is being complied with.
ii)	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	process from and a pe
ten pa (iii) pres pa po proper pro present present pre principal and present p	The gaseous emissions from various process units shall conform to the load/mass based standards notified by this Ministry on 19 th May, 1993 and standards prescribed from time to time. The TNPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location. At no time, the emission level shall go beyond the prescribed standards.	gas denong system sing dust in and dro
bris termini berogalt mas s botpl.400 (On-line continuous monitoring system shall be installed in stacks to monitor SPM and interlocking facilities shall be provided so that process can be automatically stopped in case emission level exceeds the limit.	On-line continuous monitoring system (opacity monitor) has been installed in stacks of EAF, AOD, and Slab Caster & Slab Grinder to monitor SPM. Necessary interlocking facilities incorporated with the process equipment.
	At least four ambient air quality monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NO _X are anticipated in consultation with the TNPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Bangalore / TNPCB and CPCB once in six months.	quality monitoring stations have been provided in consultation with the TNPCB. The latest data pertaining to ambient air quality and stack emissions (Oct'21 – Mar'22) along with statistical interpretation are given in Annexure-2 .
end v) see	Industrial wastewater shall be properly collected and treated so as to confirm to the standards prescribed under GSR 422 (E) dated 19 th May, 1993 and 31 st December, 1993 or as amended form time to time. The treated wastewater shall be utilized for plantation purpose.	Industrial waste water is being treated to confirm the standards prescribed by board and the treated water is recycled for process usage.

SI. No.	MoEF points	SSP's Compliance / Action Plan			
vi)	The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under EPA Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).	the norms and is being maintained.			
vii)	The company shall develop surface water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	The Steel Melting Shop installed under the project expansion has been provided with Rain water harvesting system.			
viii)	All the measures regarding occupational health surveillance of the workers shall be undertaken and regular medical examination of all the employees shall be ensured as per the Factories Act and records maintained.	All the measures regarding occupational health surveillance of the workers and all employees is undertaken and regular medical examination of all the employees being ensured as per the Factories Act and records maintained.			
ix)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA / EMP report.	EIA/EMP report 101 the			
	The company must undertake socio- economic development activities in the surrounding villages like community development programs, educational programs, drinking water supply and health care etc.	economic schemes under Corporate Social Responsibility (CSR) scheme in the surrounding villages like community development programs, drinking water supply, roads & infrastructure development, tailoring and health care etc. In addition to the above activities in surrounding villages			

SI. No.	MoEF points	SSP's Compliance / Action Plan
xi)	Crarge earmarked towards	The funds of Rs 126 Crores earmarked for gas cleaning plant, fume exhaust systems, DENOX system for pickling section in AP Line, total acid recovery system etc. were utilized for installation of the above systems. The systems are working satisfactorily and pollutants parameters are kept within the norms.
xii)	The Regional Office of this Ministry at Bangalore / CPCB / TNPCB shall monitor the stipulated conditions. A six monthly compliance report and the monitored data along with statistical interpretation shall be submitted to them regularly.	Being complied with.
xiii)	widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the	500/GEN/14 dated 24.04.2000.
xiv)	Regional Office as well as the Ministry the date of financial closure and fina approval of the project by the concerned authorities and the date of commencing	the competent authority and the status of project developmen

		STACK EN	VISSION RE	FURI	CT	. 0	:	
					STL	: B		
		*						
					1000000	nth : O		
1505					Yea	r : 2021		
1. Name of the Plant		180		ALEM STEEL		nuls :	ed to inte	
niitoArtoi (LLD) Hayan II	out we'm Wit	-11-2		eel Melting	Shop /Co	d Rolling	Mill/ Hot R	olling
2.Name of the shop		Dity 1		lill teel Melting	Hot rollin	ag Annea	ing & Pickl	ing .
COLUMN DESIGNATION OF PRESENTE				old Rolling	, HOL TOINI	ig, Ailica	ing or rick	
3. Process				crubbers, C	clones R	og Filters	upa hartan	(I)
4. Control equipment installe	d AND LEISTE				1000	28 1 111013	wk million	201
5. Sampling by	2312053/4 160 (Drd]	T	xternal Age			/2)	
Stack No & Details	Exit Vel	Temp.K	Flow Rate	No.Of	Parame	ters Avg. (mg/nm3)	Remark
	(m/s,	(Δ)(σ)	(NM3/Hr	Obs	SPM	SO2	NOx	
	Avg)	(Avg)	Avg)	003			1.0.2018	
HRM Reheating Furnace		Line.	0,		33.7	3.0	14.2 .	
	9.8	514	31184	1		2.0	5.3	P. C. H.
Apl-3 Pre pickling	27	309	3561	1	25.4	3.0	5.3	
Apl-3 Mixed Acid	3.7	309	3301	1	21.9	7.7	9.2	
Api-3 Mixed Acid	12.4	445	8287	1			N Locality	JA-
FBC Boiler 1		EELE	127		42.6	19	44.9	
The state of the s	6.9	358	18403	1	20.4	3.0	15.3	
APL-1 Electrolytic	5.1	314	3812	1	20.4	3.0	la tankal	149.4
APL-1 Brightening		phyla	ESE	8.2	24.9	3.0	9.5	
	10.7	319	7873	1	21.0	3.0	2.0	14.1
AP LINE -3 Shot Blasting	11.4	316	122609	9 1	31.8	3.0	2.0	N 12.0
*EAF & LF (SMS)	11.4	510	per	8.01	48.4	3.0	9.2	
EAT & ET (SIVIS)	13.2	337	52250	2 1			PULLIDA	85.05
*AOD (SMS)	45.2	220	16535	6 1	48.5	13	19.9	
	15.2	338	16525	0 1	23.4	3.0	5.2	
Slab cutting machine	10.2	316	62051	1	23.1		C Translation	
Slab Grinder		971.1	EJI.	l u	19.7	3.0	2.0	
	9.4	302	14545	5 1	20.0	5	17.3	
Z-Mill-2Fume Exhaust	6.8	308	45021	1 1	30.9	3	17.3	Description of
Z-Mill-1Fume Exhaust	0.6	300	1002	3.0	30.2	4	13.4	
E WIII II WIIIC ENIGNOC	10.6	310	69727	7 1			200	1 2 10 1
DG 2.0 MW -I	40.0	275	1724	3 1	25.7	3.0	222	
202014111	10.8	375	17343	5 1	29.4	3.0	288	
DG 2.0 MW -III	11.6	392	1782	0 1				11 50

STACK EMISSION RE	PORT
表现的100mm 100mm	STL : B
earth)	Annexure : I
	Month : NOV
	Year : 2021

1. Name of the Plant	SALEM STEEL PLANT
2.Name of the shop	Steel Melting Shop /Cold Rolling Mill/ Hot Rolling Mill
3. Process	Steel Melting ,Hot rolling, Annealing & Pickling , Cold Rolling
4. Control equipment installed	Scrubbers, Cyclones, Bag Filters
5. Sampling by	External Agencies.

Stack No & Details		Exit Vel	Temp.K	Flow Rate	No.Of	Parame	ters Avg.	(mg/nm3)	Remark
ADV SDE	Alles	(m/s, Avg)	(Avg)	(NM3/Hr	Obs	SPM	SO2	NOx	
SAU 0.1				Avg)			Tability (Palament I	
HRM Reheating Furnace		10.4	532	31974	1	36.5	3.0	15.3	lgA.
Apl-3 Pre pickling	TE	4.4	311	4207	1	28.5	3.0	6.9	IQA
Apl-3 Mixed Acid	d la	13.2	427	9193	1	24.3	8.2	10.0	501
FBC Boiler 1	ns.	8.6	335	36263	. 1	40.2	19	58	js -
APL-1 Electrolytic	b5	5.6	325	4044	1	23.3	3.0	13.2	ina .
APL-1 Brightening	16	9.7	306	7440	1	27.5	3.0	8.8	na l
AP LINE -3 Shot Blasting	.38	10.8	319	115063	1	27.9	3.0	2.0	A.Ē
*EAF & LF (SMS)	KP	12.4	325	508958	1	39.6	3.0	8.7	na=
*AOD (SMS)		13.7	342	147206	1	41.9	16	21.4	deiz
APL-2 Electrolytic	1	8.0	313	21309	1	29.5	3.0	10.7	
APL-2 Brightening	T.E	10.6	318	7824	1	24.6	3.0	12.5	k/I-3
Z-Mill-2Fume Exhaust		7.6	311	49832	1	27.8	8	19.6	Mas 1
Z-Mill-1Fume Exhaust	-65	11.4	303	76722	1	21.9	- 5	14.5	erC .
AP LINE -2 Shot Blasting	TES.	9.4	312	7040	1	27.4	3.0	13	50
AP LINE -3 Reheating Furnac	ce	4.9	410	40656	1	14.6	3.0	17.7	lice

AP LINE -1 Pre heater	5.2	368	42471	1	16.9	3.0	15.4
AP LINE -3 quench section-1	7.6	*307	84135	1	19.3	3.0	12.8
BDL : Below Detectable Limit							

M. Carre great

| No.co | No.c

STACK EMISSION REPORT

STL : B

Annexure:1

Month :DEC

Year : 2021

1. Name of the Plant	SALEM STEEL PLANT
2.Name of the shop	Steel Melting Shop /Cold Rolling Mill/ Hot Rolling Mill
3. Process	Steel Melting ,Hot rolling, Annealing & Pickling , Cold Rolling
4. Control equipment installed	Scrubbers, Cyclones, Bag Filters
5. Sampling by	External Agencies.

Stack No & Details	Cuite Val	Т И	Elaw Bata	No.O			/ 2)	
Stack NO & Details	Exit Vel	Temp.K	Flow Rate	f	Paramet	ters Avg. (mg/nm3)	Remarks
	(m/s, Avg)	(Avg)	(NM3/Hr	Obs	SPM	502	NOx	
			Avg)					
HRM Reheating Furnace	11.8	540	35741	1	32.8	3.0	16.2	
Apl-3 Pre pickling	3.6	317	3377	1	24.9	3.0	7.8	
Apl-3 Mixed Acid	12.5	439	8468	1	28.2	9.4	12	
FBC Boiler(OLD)	7.8	389	19145	1	36.4	27	52	
APL-1 Electrolytic	4.7	318	3469	1	25.9	3.0	14	
APL-1 Brightening	11.2	303	8619	1	30.2	3.0	10.6	
*EAF & LF (SMS)	10.7	345	412566	1	33.9	3.0	7.5	
*AOD (SMS)	14.8	352	154507	1	38.6	17	18	
Z-Mill-1Fume Exhaust	10.4	302	69992	1	26.2	6	12.9	

M. bandport

STACK EMISSION REPORT STL : B

Annexure : I

Month : JAN

Year : 2022

11/1/19/19					
SALEM STEEL PLANT					
Steel Melting Shop /Cold Rolling Mill/ Hot Rolling					
Mill					
Steel Melting ,Hot rolling, Annealing & Pickling ,					
Cold Rolling					
Scrubbers, Cyclones, Bag Filters					
External Agencies.					

Stack No & Details	Exit Vel	Temp.	Flow Rate	No.O f	Paramet	ers Avg. (m	ng/nm3)	Remarks
Tall I are 1021	(m/s, Avg)	(Avg)	(NM3/ Hr	Obs	SPM	SO2	NOx	lga .
			Avg)				ah susani	Gleca
HRM Reheating Furnace	10.9	525	33958	1	38.4	3.0	15.7	
Apl-3 Pre pickling	4.2	310	4029	1	20.8	3.0	5.5	
Apl-3 Mixed Acid	1304	446	8935	1	23.9	7.0	9.8	L IX
FBC Boiler(OLD)	6.9	349	27927	1	37.9	21	62	
APL-1 Electrolytic	5.4	313	4049	1	22.9	3.0	12.5	ic .
APL-1 Brightening	9.5	311	7170	1	26.7	3.0	7.8	
*EAF & LF (SMS)	11.6	328	471767	1	36.5	3.0	. 8.4	
*AOD (SMS)	15.2	337	165746	1	37.1	18	20.2	
Z-Mill-1Fume Exhaust	11.0	315	71209	1	23.8	4	11.6	
Ap Line -3 Short Blasting	11.6	325	121305	1	29.3	<3.0	<2.0	
Diesel Generator -75 KVA (Townshi		472	608	1	0.257	<3.0	2.088	1110

BDL : Below Detectable Limit

Wirampout

| STACK EMISSION REPORT | STL : B | Annexure : I | Month : FEB | Year : 2022 |

and the second s	
1. Name of the Plant	SALEM STEEL PLANT
2.Name of the shop	Steel Melting Shop /Cold Rolling Mill/ Hot Rolling Mill
3. Process	Steel Melting ,Hot rolling, Annealing & Pickling , Cold Rolling
4. Control equipment installed	Scrubbers, Cyclones, Bag Filters
5. Sampling by	External Agencies.

Stack No & Details	Exit Vel	Temp.K	Flow Rate	No.O f	Paramet	ters Avg. (I	mg/nm3)	Remarks
	(m/s, Avg)	(Avg)	(NM3/Hr	Obs	SPM	SO2	NOx	
		Allow Ell	Avg)	13				
HRM Reheating Furnace	9.5	538	2881	1	33.9	<3.0	17.2	beta
Apl-3 Pre pickling	3.9	317	3659	1	25.9	<3.0	6.7	
Apl-3 Mixed Acid	12.7	423	8291	1	21.7	6.0	11.4	USE
FBC Boiler 11	8.4	327	36286	1	35.9	18	53	
APL-1 Electrolytic	4.6	321	3364	1	26.7	<3.0	15.8	648
APL-1 Brightening	10.8	315	8047	1	23.9	<3.0	10.3	304
*EAF & LF (SMS)	12.2	343	474471	1	40.7	<3.0	9.2	pla
*AOD (SMS)	13.9	355	143885	1	42.6	14	22.9	July 1
Z-Mill-1Fume Exhaust	10.2	309	69952	1	27.2	5	12.4	May *
Z-Mill-11Fume Exhaust	6.7	306	44649	1	24.9	6	14.8	881
Ap Line -2 Short Blasting	8.6	318	6319	1	29.3	<3.0	16.2	was "
Ap Line -3 Short Blasting	10.4	312	120368	1	26.8	<3.0	<2.0	100

STACK EMISSION REPORT

STL : B

Annexure : I

Month :MAR

Year : 2022

	SALEM STEEL PLANT
1. Name of the Plant	Steel Melting Shop /Cold Rolling Mill/ Hot Rolling
	Mill
Name of the shop	Steel Melting ,Hot rolling, Annealing & Pickling , Cold Rolling
3. Process	Scrubbers, Cyclones, Bag Filters
4. Control equipment installed	External Agencies.
5. Sampling by	External

	Exit Vel	Temp.K	Flow Rate	No.O	Paramete	ers Avg. (m	g/nm3)	Remark
tack No & Details	(m/s, Avg)	(Avg)	(NM3/Hr	Obs	SPM	SO2	NOx	
	0,		Avg)		20.6	<3.0	19.0	
HRM Reheating Furnace	9.1	528	28298	11	29.6		9.0	
Apl-3 Pre pickling	4.6	318	4362	1	23.2	<3.0		
Apl-3 Mixed Acid	12.5	430	47730	1	20.2	4.0	15.0	
FBC Boiler 11		332	29850	1	32.4	12	53	
APL-1 Electrolytic	7.0	312	4913	1	20.6	<3.0	18	
APL-1 Brightening.	6.5		8978	1	20.5	<3.0	9.0	
*EAF & LF (SMS)	12.4	325		1	36.2	<3.0	12	
*AOD (SMS)	13.6	349	522312		38.5	8.0	17	
	12.4	350	130885	1	25.8	4.0	13	
Z-Mill-1Fume Exhaust	9.2	311	60612	1	21.6	5.0	14	+
Z-Mill-2 Fume Exhaust	6.1	309	40448	1	Tarde-Street Co.	<3.0	19	-
Ap Line -2 preheater	8.5	314	81864	1	17.5			
Ap Line -2 Short Blasting	9.4	309	7158	1		<3.0		
AP line -2 Equalisation			18683	1	18.2	<3.0		
AP Line-2 Brightening	9.6			1	21.5	<3.0	7.0	

AP Line-2 Quench	8.5	313	54656	1	17.2	<3.0	16	
APL-2 Electrolyting	9.1	312	24433	1	26.1	<3.0	15	-
Ap Line -3 Short Blasting	11.7	318	125765		21.5	<3.0	2.0	
Z-Mill-1Motor commutator	7.4	316	23991		14.7	<3.0	12	

BDL : Below Detectable Limit

M. Campet

131A

ULVA

ULVA

SHIST

SHIST

A 913

A 114

10 to 10 to

ALLE STATES

principle of and 60

	Name of etack SPM (mg/Nm3)	0.	SPM (ma/Nm3)	(3)	7	SO ₂ (mg/Nm3)	m3)	3	NOx (mg/Nm3)	m3)
ON IC	Name of stack	Min	Max	Average	Min	Max	Average	Min	Max	Average
	Parameters	-		000	730	0 8 9	8	7.5	12	9.16
-	EAF & LF stack	33.8	4.04	23.7	0.0	200		11	7 ,00	20
0	AOD stack (sms)	37.1	48.5	41.2	00	18	14.3		4.12	000
1 0	Do Hooting furnace.HRM	29.6	38.4	34.15	<3.0	<3.0	3	14.2	19	16.26
2 1		21.5	31.8	27.46	<3.0	<3.0	3	<2.0	<2.0	2.00
n n	APL-5 SHOT BIASHING	0 00	28.5	25.1	<3.0	<3.0	3	-	7.8	5.54
۵		2.00	0.00	24	9	9.4	7.6	9.2	12	10.48
_		21.1	7.07	97 00	120	23.0	6	12	16	13.73
00	APL-2 Shot Blasting	27.4	28.3	20.40	0.07	0.0	,		70	0 7
0	API -1 Flectrolytic	20.4	26.7	23.3	<3.0	<3.0	3		0	1.0
5	A DI 1 Brightening (Fluoride)	20.5	30.2	25.6	<3.0	<3.0	3	7.8	10.6	9.3
2		22.0	30.2	26.01	4	9	4.6	11.6	14.5	12.96
-	Mill-I Fume Exhaust	6.77	4	0.00		0	ď	14.8	19.6	16.92
12	Mill-II Fume Exhaust	21.6	30.9	26.3	Ω	0		2	0	000
13	FBC Boiler -II	36.4	42.6	39.27	19	27	21.5	6.44	00	24.42
5 2	Milliping	15.9	15.9	15.9	<3.0	<3.0	8	7	7	7.00
t i	7 mill 4 motor commitator	α	88	89.89	<3.0	<3.0	n	12.4	12.4	12.4
2	Z IIIII I IIIOO COIIIIII atatol	21.7	28.2	24	9	4.0	7.6	9.2	12	10.48
102	3 3	21.7	28.1	24.06	<3.0	<3.0	8	7	14	11.16
-	APL- II Brigniering	0.	7	α π.π.	<3.0	<3.0	m	10.7	15	12.85

Donag. W

AMBIENT AIR QUALITY REPORT

STL

: B

Annexure: II

Month Year :OCT

1. Name of the Plant

SALEM STEEL PLANT

2. Sampling by

External Agency

S.No. Location	Type of	Date of	No.Of	Parameters	s Avg. (micro	o gm/Nr	n3)	Remarks
	Sample	Sampling	Obser's	PM-2.5	PM-10	SO2	NOx	•
	Cont / Int		Norm	60	100	80	80	
1. Works Office	Cont	22.10.2021	1	20.2	35.6	5.5	13.7	
2.IFFS	Cont	21.10.2021	1	17.9	32.5	5.0	11.8	
3.Makeup Water Pumphouse	Cont	21.10.2021	1	21.4	30.8	4.4	12.4	
4.Stainless Surabi	Cont	20.10.2021	1	19.6	36.9	5.0	14.9	
5.Naickenpatty	Cont	20.10.2021	1	21.2	39.5	6.1	15.5	
6.Ganapathi Nagar	Cont	20.10.2021	1	22.8	41.7	6.7	16.2	
7.Thoppukadu	Cont	21.10.2021	1	15.6	35.7	4.4	13.0	
8.Thoppur	Cont	21.10.2021	1	22.7	46.9	5	14.9	
9.SSP Main Hospital	Cont	20.10.2021	1	19.9	33.2	7.2	14.3	
10.Near Medical College	Cont	20.10.2021	1	20.8	40.5	5.5	16.8	(

BDL: Below Detectable Limit

M. bandper

AMBIENT AIR QUALITY REPORT

STL : B
Annexure : II
Month :Nov
Year : 2021

1. Name of the Plant SALEM STEEL PLANT
2. Sampling by External Agency

S.No. Location	Type of	Date of	No.of	Paramete	rs Avg. (mic	ro gm/Nn	n3)	Remarks
	Sample	Sampling	Obser's	PM-2.5	PM-10	SO2	NOx	
	Cont / Int	o sc	Norm	60	100	80	80	
1. Works Office	Cont	24.11.2021	1	18.6	32.9	6.1	14.3	
2.IFFS	Cont	23.11.2021	1	16.2	34.7	5.5	13.7	
3.Makeup Water Pumphouse	Cont	23.11.2021	1	15.6	27.3	5.0	11.8	
4.Stainless Surabi	Cont	22.11.2021	1	17.5	33.8	4.4	13.2	LX.
5.Naickenpatty	Cont	22.11.2021	1	18.9	34.6	4.9	12.7	P
6.Ganapathi Nagar	Cont	22.11.2021	1-1-	19.2	38.5	5.5	15.2	oH OI
7.Thoppukadu	Cont	23.11.2021	1	16.3	22.9	4.9	12.2	001
8.Thoppur	Cont	23.11.2021	1	20.4	42.5	4.9	12.7	
9.SSP Main Hospital	Cont	22.11.2021	1	17.2	30.9	6.0	13.2	04]
10.Near Medical College	Cont	22.11.2021	1	18.8	36.7	4.4	14.2	

		AMBIE	NT AIR QUAI	LITY REPO	ORT			
		airen Arce	e mar leanver	STL	: B			
				Mont	erganne vorm month			
				Year	: 2021			
		F12		I cai	. 2021			
1. Name of the Plant	II. HERI		SALEM ST	EEL PLAN	IT			
2. Sampling by	men Vis	ole	External Ag	ency				
		an V			_ = 0.0			
S.No. Location	Type of	Date of	No.Of	Parameter	rs Avg. (mic	ro gm/Ni	m3)	Remai.
	Sample	Sampling	Obser's	PM-2.5	PM-10	SO2	NOx	Jane I
	Cont / Int	ybattari lafo	Norm	60	100	80	80	- 1
					21.0	1	10.4	
1.Works Office	Cont	22.12.2021	1	22.9	36.9	7.1	18.6	
2.IFFS	Cont	21.12.2021	1	26.9	54.2	8.2	19.6	
3.Makeup Water Pumphouse	Cont	21.12.2021	1	23.9	38.5	7.7	19.1	
4.Stainless Surabi	Cont	21.12.2021	1	19.8	35.9	5.5	15.6	
5.Naickenpatty	Cont	20.12.2021	1	20.7	39.5	6.6	17.6	
6.Ganapathi Nagar	Cont	20.12.2021	1	23.8	44.7	7.1	19.6	innet i
7.Thoppukadu	Cont	21.12.2021	-/1	20.2	38.6	6.0	17.1	(12) A
8.Thoppur	Cont	20.12.2021	1	22.9	43.8	6.6	19.1	447,01
9.SSP Main Hospital	Cont	20.12.2021	1 12	19.2	33.6	4.9	14.7	U.U.a Nama
10.Near Medical College	Cont	20.12.2021	1	21.5	41.9	60	18.6	HIT (

	(0.1.4)	AMBIE	NT AIR QUA	LITY REPOI	RT			
	a			STL	: B			
				Annex	2 200 E-2			
				Month				
	7.5			Year	: 2022			
1. Name of the Plant	Think	LIGHT A PRINT	SALEM S	TEEL PLAN	Γ	saffron	Di with	7 T
2. Sampling by		zeeza koen o	External A	gency		4/2	HE 1999	3 1
S.No. Location	Type of	Date of	No.Of	Parameters	Avg. (micr	o gm/Nr	n3)	Remark
HOME STORE OF I	Sample	Sampling	Obser's	PM-2.5	PM-10	SO2	NOx	
	Cont / Int	Hook	Norm	60	100	80	80	
1. Works Office	Cont	21.01.2022	105	24.3	40.8	5.7	14.8	7
2.IFFS	Cont	20.01.2022	100	24.4	50.6	8.3	17.6	
3.Makeup Water Pumphouse	Cont	20.01.2022	1	22.5	41.7	7.3	19.5	
4.Stainless Surabi	Cont	20.01.2022	1	21.9	38.4	6.2	17.1	
5.Naickenpatty	Cont	20.01.2022	1	23.4	41.7	7.8	19.0	
6.Ganapathi Nagar	Cont	19.01.2022	1	25.3	45.9	78	20.0	
7.Thoppukadu	Cont	20.01.2022	1	18.5	39.9	5.2	15.7	
8.Thoppur	Cont	19.01.2022	1	23.6	46.2	5.7	18.6	
9.SSP Main Hospital	Cont	19.01.2022	1 2005	20.9	37.5	5.2	16.2	2.5
10.Near Medical College	Cont	19.01.2022	Los	22.8	43.2	6.7	19.5	(a)

M. Carelong

AMBIENT AIR QUALITY REPORT STL : B Annexure: II : FEB Month : 2021 Year SALEM STEEL PLANT 1. Name of the Plant External Agency 2. Sampling by Rem Parameters Avg. (micro gm/Nm3) Date of No.Of Type of S.No. Location PM-10 SO2 NOx PM-2.5 Obser's Sampling Sample 80 80 100 60 Norm Cont / Int 43.9 7.8 15.7 22.2 21.02.2022 1. Works Office Cont 8.8 20.5 53.8 27.2 21.02.2022 1 2.IFFS Cont 8.3 20.0 45.2 24.5 21.02.2022 3.Makeup Water Pumphouse Cont 41.9 6.7 19.0 22.5 Cont 21.02.2022 4. Stainless Surabi 5.2 17.1 44.2 20.8 Cont 21.02.2022 5. Naickenpatty 21.4 9.3 50.2 21.02.2022 1 27.2 6.Ganapathi Nagar Cont 40.6 4.7 16.2 21.3 21.02.2022 1 7. Thoppukadu Cont 8.3 20.5 48.8 26.2 21.02.2022 1 Cont 8.Thoppur 17.1 39.8 6.2 21.6 21.02.2022 1 9.SSP Main Cont Hospital 17.6 45.9 5.7 21.6 21.02.2022 10.Near Medical Cont College

AMBIENT AIR QUALITY REPORT STL : B Annexure: II Month :MAR : 2022 Year 1. Name of the Plant SALEM STEEL PLANT 2. Sampling by External Agency S.No. Location Date of No.Of Parameters Avg. (micro gm/Nm3) Type of Remar Obser's PM-2.5 PM-10 SO2 NOx Sample Sampling 80 80 Cont / Int Norm 60 100 21.7 39.2 6.2 16.7 1. Works Office 24.03.2022 Cont 1 25.7 52.3 7.3 22.4 2.IFFS 25.03.2022 Cont 1 26.0 47.2 9.9 18.6 3.Makeup Water 24.03.2022 1 Pumphouse Cont 20.2 43.5 7.3 21.4 4. Stainless Surabi Cont 22.03.2022 1 5. Naickenpatty 22.03.2022 22.6 43.2 6.7 18.1 Cont 1 22.03.2022 6.Ganapathi Nagar Cont 23.6 53.0 6.2 22.4 17.1 7. Thoppukadu 23.03.2022 1 21.3 43.5 6.2 Cont 23.03.2022 24.9 51.4 7.8 21.4 8. Thoppur Cont 1 9.SSP Main 22.03.2022 23.8 42.4 5.7 19.0 Cont 1 Hospital 24.3 48.1 5.2 16.7 10.Near Medical 22.03.2022 1 Cont

M. leandyrong

College

No Is	SI No Location		PM2.5			PM10			802		NOx		
		Min	Max	Avg	Min	Max	Avg Min	u	Max	Avg	Min	Max	Avg
τ-	Works Office	18.60	24.30		32.90	43.90		5.5	7.8		13.	7 18.6	
2	IFFS	16.20	27.20	23.05	32.50	54.20	46.35	5	8.8	7.18	3 7.3	3 20.5	15.08
ю	Makeup water PH	15.60	24.50	22.31	27.30	47.20	38.45	4.4	6.6	7.10	11.8	3 20	16.90
4	Stainless Surabhi	17.50	22.50	20.25	33.80	43.50	38.40	5	7.3	5.85	13.2	21.4	16.86
ιΩ	Naickenpatti	18.90	23.40	21.26	34.60	44.20	40.45	4.9	7.8	6.21	12.7	19	16.66
9	Ganapathi Nagar	19.20	27.20	23.65	38.50	53.00	45.66	5.5	9.3	7.10	15.2	22.4	19.13
7	Thoppukadu	15.60	21.30	18.86	22.90	43.50	36.86	4.7	6.2	5.40	13	17.1	15.22
œ	Thoppur	20.40	26.20	23,45	42.50	51.40	46.60	4.9	8.3	6.38	12	7 21.4	17.86
o	SSPmain hospital	17.20	23.80	20.43	30.90	42.40	36.23	4.9	7.2	7.36	3 13.2	19	15.75
10	Near medical college	18.80	24.30	21.63	36.70	48.10	42.72	4.4	6.7	5.83	14.2	19.5	17.23

FUGITIVE EMISSION MONITORING AT SMS (LF) Area

S.No	Month	Oct 21	Nov'21	Dec'21	Jan'22	Feb'22	Feb'22 Mar'22	REMARKS
	Parameters							
1	PM-2.5 (µg/m3)	29.2	27.3	32.6	33.6	36.4	32	
2	PM-10 (µg/m3)	55.7	52.9	60.7	64.4	62.9	61.5	
3	502 (µg/m3)	8	7.7	9.4	6.6	9.3	7.3	
4	NOX (µg/m3)	21.1	9.61	20.5	21.4	21.9	22.4	
5	CO (mg/m3)	BDL	BDL	BDL	BDL	BDL	BDL	
9	F (µg/m3)	BDL	BDL	BDL	BDL	BDL	BDL	

M. Composition

FUGITIVE EMISSION MONITORING AT SMS (LF) Area-

No Month										
JO INIGHTH	Oct 21	Nov'21	Dec'21	Jan'22	Feb.22	Mar 22	NIIN	VE 1/1	2	
Darameters					-		tte	176 1	21.05	
S CONTRACTOR OF THE PARTY OF TH		273	308	33.6	36.4	32	21.3	50,4	20.10	
1 [PM-2 5 (ug/m3)	7.67	C.17	250				001	0 27	7 05	
10 LL 01	T L	0 63	7 09	64.4	62.6	0.10	6.76	7,00	27.7	
2 [PM-10 (11g/m3)	25./	676	00.		1		-	0	0	
7 100 100 100 100 100 100 100 100 100 10		11	10	66	63	7.3	7.3	9.9	0.0	
5 CO2 (119/m3)	20	1.,		1		-	-	1	47.10	22
3 302 (HB/1113)		101	200	21.4	219	224	20.5	22.4	C+:17	Carlotte and a second
A NOV (ug/m3)	21.1	19.0	C.U.2	7.1.7				1	-	
4 NOV (46/1112)		-	-	IVa	Ca	30	BDL	BDL	BUL	
r co /ma/m3	BDL	BUL	DOL	חחח	100		-	100	0	
5 CO (1118/1112)		-	100	Ca	2	BD	BDC	801	BUL	
E (110/m3)	BDI.	BDL	DOL	200	100			-	-	